Nothing
RC.pc<-function(comm,rand=1000,na.zero=TRUE,nworker=4,
memory.G=50,weighted=TRUE,unit.sum=NULL,
meta.ab=NULL,sig.index=c("RC","Confidence","SES"),
detail.null=FALSE,output.bray=FALSE,silent=FALSE,
taxo.metric="bray", transform.method=NULL, logbase=2,
dirichlet=FALSE)
{
# v20200728 add sig.index, detail.null, output.bray
requireNamespace("vegan")
requireNamespace("parallel")
if(max(rowSums(comm,na.rm = TRUE))<=1 & (!dirichlet))
{
warning("The values in comm are less than 1, thus considered as proportional data, Dirichlet distribution is used to assign abundance in null model.")
dirichlet=TRUE
}
if(.Platform$OS.type=="windows")
{
if(utils::memory.limit()<memory.G*1024)
{
memotry=try(utils::memory.limit(size=memory.G*1024),silent = TRUE)
if(inherits(memotry,"try-error")){warning(memotry[1])}
}
}
com<-comm[,colSums(comm)>0]
if(!weighted){com[com>0]=1}
sig.index=sig.index[1]
if(!(sig.index %in% c("RC","Confidence","SES"))){stop("wrong sig.index for RC.pc.")}
if(!is.null(unit.sum)){if(length(unit.sum)==1){unit.sum=rep(unit.sum,nrow(comm))}}
BCnew<-function(comi,unit.sum,na.zero,
taxo.metric,transform.method,logbase)
{
if(taxo.metric=='bray' & is.null(transform.method))
{
if(is.null(unit.sum))
{
comit=comi/rowSums(comi)
comit[which(rowSums(comi)==0),]=0
BC=vegan::vegdist(comit,method="bray")
}else{
comit=comi/unit.sum
comit[which(unit.sum==0),]=0
BC=vegan::vegdist(comit,method="manhattan")/2
}
}else{
if(!is.null(transform.method))
{
if(inherits(transform.method,"function"))
{
comit=transform.method(comi)
}else{
comit=vegan::decostand(comi,method = transform.method,logbase = logbase,na.rm=TRUE)
}
}else{comit=comi}
BC=vegan::vegdist(comit,method = taxo.metric)
}
if(na.zero){BC[is.na(BC)]=0}
as.matrix(BC)
}
BC.obs<-BCnew(com,unit.sum,na.zero,
taxo.metric,transform.method,logbase)
if(is.null(meta.ab))
{
if(is.null(unit.sum))
{
com.ra=com/rowSums(com)
com.ra[which(rowSums(com)==0),]=0
}else{
com.ra=com/unit.sum
com.ra[which(unit.sum==0),]=0
}
prob.ab=colMeans(com.ra)
}else{
if(is.null(names(meta.ab)))
{
if(length(meta.ab)!=ncol(comm)){stop("meta.ab setting is wrong.")}else{prob.ab=meta.ab}
}else{
prob.ab=rep(0,ncol(comm))
meta.ab=meta.ab[which(names(meta.ab) %in% colnames(comm))]
prob.ab[match(names(meta.ab),colnames(comm))]=meta.ab
}
}
com.rd0=com
com.rd0[]=0
id<-(1:ncol(com))
prob.sp<-colSums(com>0)
#prob.ab<-colSums(com)
Si<-rowSums(com>0)
Ni<-rowSums(com)
samp.num=nrow(com)
BC.rand<-function(j,com.rd0,samp.num,id,prob.sp,prob.ab,Si,Ni,na.zero,unit.sum,
BCnew,taxo.metric,transform.method,logbase,dirichlet)
{
requireNamespace("vegan")
com.rd=com.rd0
if(!dirichlet)
{
for(i in 1:samp.num)
{
if(Si[i]==0){com.rd[i,]=0}else{
id.sp<-sample(id,Si[i],replace=FALSE,prob=prob.sp)
if(length(id.sp)==1){count=rep(id.sp,Ni[i])}else{
count<-sample(id.sp,(Ni[i]-Si[i]),replace=TRUE,prob=prob.ab[id.sp])
}
table<-table(count)
com.rd[i,as.numeric(names(table))]=as.vector(table)
com.rd[i,id.sp]=com.rd[i,id.sp]+1
}
}
}else{
for(i in 1:samp.num)
{
if(Si[i]==0){com.rd[i,]=0}else{
id.sp<-sample(id,Si[i],replace=FALSE,prob=prob.sp)
if(length(id.sp)==1){com.rd[i,id.sp]=1}else{
requireNamespace("DirichletReg")
com.rd[i,id.sp]=DirichletReg::rdirichlet(n=1,alpha = prob.ab[id.sp])
}
}
}
}
BCnew(com.rd,unit.sum,na.zero,
taxo.metric,transform.method,logbase)
}
c1<-try(parallel::makeCluster(nworker,type="PSOCK"))
if(inherits(c1,"try-error")){c1 <- try(parallel::makeCluster(nworker, setup_timeout = 0.5))}
if(inherits(c1,"try-error")){c1 <- parallel::makeCluster(nworker, setup_strategy = "sequential")}
if(!silent){message("Now parallel computing. begin at ", date(),". Please wait...")}
BC.rd<-parallel::parLapply(c1,1:rand,BC.rand,com.rd0=com.rd0,samp.num=samp.num,id=id,
prob.sp=prob.sp,prob.ab=prob.ab,Si=Si,Ni=Ni,na.zero=na.zero,unit.sum=unit.sum,
BCnew=BCnew,taxo.metric=taxo.metric,
transform.method=transform.method,logbase=logbase,dirichlet=dirichlet)
parallel::stopCluster(c1)
BC.rd=array(unlist(BC.rd),dim=c(nrow(BC.rd[[1]]),ncol(BC.rd[[1]]),length(BC.rd)))
gc()
if(!silent){message("----now calculating sig.index of Bray at ",date(),"----")}
if(sig.index=="RC")
{
comp<-function(x,c){(x<c)+0.5*(x==c)}
alpha=matrix(rowSums(apply(BC.rd,3,comp,c=BC.obs)),nrow=nrow(BC.obs))/rand
result=(alpha-0.5)*2
}else if(sig.index=="SES"){
SES=(BC.obs-apply(BC.rd,c(1,2),mean))/(apply(BC.rd,c(1,2),stats::sd))
diag(SES)<-0
result=SES
}else if(sig.index=="Confidence"){
BC.obsar=array(BC.obs,dim=dim(BC.rd))
alpha=(apply(BC.obsar>BC.rd,c(1,2),sum))/rand
alpha2=(apply(BC.obsar<BC.rd,c(1,2),sum))/rand
alpha[which(alpha2>alpha, arr.ind = TRUE)]=-alpha2[which(alpha2>alpha, arr.ind = TRUE)]
result=alpha
}
rownames(result)=rownames(BC.obs)
colnames(result)=colnames(BC.obs)
output=list(index=result,sig.index=sig.index)
if(output.bray)
{
output=c(output,list(BC.obs=BC.obs))
}
if(detail.null)
{
rownames(BC.rd)=rownames(BC.obs)
colnames(BC.rd)=colnames(BC.obs)
BC.randm=matrix(sapply(1:(dim(BC.rd)[3]),
function(i)
{
(iCAMP::dist.3col(BC.rd[,,i]))[,3]
}),ncol=(dim(BC.rd)[3]))
colnames(BC.randm)=paste0("rand",1:ncol(BC.randm))
output=c(output,list(rand=data.frame((iCAMP::dist.3col(BC.rd[,,1]))[,1:2,drop=FALSE],
BC.randm,stringsAsFactors = FALSE)))
}
output
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.