Nothing
#' @title Generate expression data
#'
#' @description this function generates artificial peptide abundance data with DA proteins
#' samples are drawn from a gaussian distribution
#'
#' @param nSamples1 number of samples in condition 1
#' @param nSamples2 number of samples in condition 2
#' @param meanSamples xxx
#' @param sdSamples xxx
#' @param nFeatures number of total features
#' @param nFeaturesUp number of features up regulated
#' @param nFeaturesDown number of features down regulated
#' @param meanDynRange mean value of the dynamic range
#' @param sdDynRange sd of the dynamic range
#' @param meanDiffAbund xxx
#' @param sdDiffAbund xxx
#'
#' @return A list containing the data, the conditions label and the regulation
#' label (up/down/no)
#'
#' @export
#'
#' @import stats
generate.ExpressionData = function(nSamples1,
nSamples2,
meanSamples,
sdSamples,
nFeatures,
nFeaturesUp,
nFeaturesDown,
meanDynRange,
sdDynRange,
meanDiffAbund,
sdDiffAbund){
# generate a matrix of nSamples1 + nSamples2 samples from a Gaussian distribution
nSamples = nSamples1 + nSamples2
data = matrix(rnorm(nSamples*nFeatures,meanSamples,sdSamples),nFeatures,nSamples)
# spread the data on the dynamic range ...
means = rnorm(nFeatures,meanDynRange,sdDynRange)
data = data + means
# select the groups of samples ...
conditions = c(rep(1,nSamples1),rep(2,nSamples2))
# define the extra abundance values for up and down expressed features ...
DE.coef.up = matrix(rnorm(nFeaturesUp*nSamples1,meanDiffAbund,sdDiffAbund),
nFeaturesUp,nSamples1)
DE.coef.down = matrix(rnorm(nFeaturesDown*nSamples2,meanDiffAbund,sdDiffAbund),
nFeaturesDown,nSamples2)
# create up and down expressed features
data[1:nFeaturesUp,conditions==1] = DE.coef.up+data[1:nFeaturesUp,conditions==1]
data[(nFeaturesUp+1):(nFeaturesUp + nFeaturesDown),conditions==2] =
DE.coef.down+data[(nFeaturesUp+1):(nFeaturesUp + nFeaturesDown),conditions==2]
# define the labels vector for the features indicating whether they are up/down/no expressed
labelFeatures = c(rep(1,nFeaturesUp),
rep(2,nFeaturesDown),
rep(3,nFeatures - (nFeaturesUp+nFeaturesDown)))
row.names(data) = 1:nFeatures
return(list(data,conditions,labelFeatures))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.