R/simPYY2.R

Defines functions simPYY2

Documented in simPYY2

#'@title PFS similarity measure simPYY2
#'@description PFS similarity measure values using simPYY2 computation technique with membership, and non-membership values of two objects or set of objects.
#'@param ma PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
#'@param na PFS non-membership values for the data set x computed using either Sugeno and Terano's  or Yager's non-membership function
#'@param mb PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
#'@param nb PFS non-membership values for the data set y computed using either Sugeno and Terano's  or Yager's non-membership function
#'@param k A constant value, considered as 1
#'@return The PFS similarity values of data set y with data set x
#'@references X. Peng, H. Yuan, and Y. Yang. Pythagorean fuzzy information measures and their applications. International Journal of Intelligent Systems, 32(10):991 - 1029, 2017.
#'@examples
#'x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
#'y<-matrix(c(11,21,6),nrow=1)
#'a<-mn(x)
#'b<-std(x)
#'a1<-mn(y)
#'b1<-std(y)
#'lam<-0.5
#'ma<-memG(a,b,x)
#'na<-nonmemS(ma,lam)
#'mb<-memG(a1,b1,y)
#'nb<-nonmemS(mb,lam)
#'k<-1
#'simPYY2(ma,na,mb,nb,k)
#'#[1] 0.4082725 0.4321653 0.7383688 0.7383688
#'@export
simPYY2<-function(ma,na,mb,nb,k){
  c<-matrix(0,nrow=nrow(ma),ncol=ncol(ma))
  for (i in 1:nrow(ma)) {
    for(j in 1:ncol(ma))
      c[i,j]<-(min(ma[i,j]^2,mb[k,j]^2)+min(na[i,j]^2,nb[k,j]^2))/(max(ma[i,j]^2,mb[k,j]^2)+max(na[i,j]^2,nb[k,j]^2))
  }
  for(j in 1:ncol(c)){
    sum<-(1/ncol(c))*(rowSums(c))
  }
  sum
}

Try the ipsfs package in your browser

Any scripts or data that you put into this service are public.

ipsfs documentation built on June 21, 2022, 5:07 p.m.