Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo = TRUE, message = F, warning = F ) library(jstable)
Regression Tables from 'GLM', 'GEE', 'GLMM', 'Cox' and 'survey' Results for Publication.
remotes::install_github('jinseob2kim/jstable') library(jstable)
## Gaussian glm_gaussian <- glm(mpg~cyl + disp, data = mtcars) glmshow.display(glm_gaussian, decimal = 2) ## Binomial glm_binomial <- glm(vs~cyl + disp, data = mtcars, family = binomial) glmshow.display(glm_binomial, decimal = 2)
geeglm
object from geepack packagelibrary(geepack) ## for dietox data data(dietox) dietox$Cu <- as.factor(dietox$Cu) dietox$ddn = as.numeric(rnorm(nrow(dietox)) > 0) gee01 <- geeglm (Weight ~ Time + Cu , id = Pig, data = dietox, family = gaussian, corstr = "ex") geeglm.display(gee01) gee02 <- geeglm (ddn ~ Time + Cu , id = Pig, data = dietox, family = binomial, corstr = "ex") geeglm.display(gee02)
lmerMod
or glmerMod
object from lme4 packagelibrary(lme4) l1 = lmer(Weight ~ Time + Cu + (1|Pig), data = dietox) lmer.display(l1, ci.ranef = T) l2 = glmer(ddn ~ Time + Cu + (1|Pig), data= dietox, family= "binomial") lmer.display(l2)
frailty
or cluster
optionslibrary(survival) fit1 <- coxph(Surv(time, status) ~ ph.ecog + age, cluster = inst, lung, model = T) ## model = T: to extract original data fit2 <- coxph(Surv(time, status) ~ ph.ecog + age + frailty(inst), lung, model = T) cox2.display(fit1) cox2.display(fit2)
coxme
object from coxme packagelibrary(coxme) fit <- coxme(Surv(time, status) ~ ph.ecog + age + (1|inst), lung) coxme.display(fit)
svyglm
object from survey packagelibrary(survey) data(api) apistrat$tt = c(rep(1, 20), rep(0, nrow(apistrat) -20)) apistrat$tt2 = factor(c(rep(0, 40), rep(1, nrow(apistrat) -40))) dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) ds <- svyglm(api00~ell+meals + tt2, design=dstrat) ds2 <- svyglm(tt~ell+meals+ tt2, design=dstrat, family = quasibinomial()) svyregress.display(ds) svyregress.display(ds2)
svycoxph
object from survey packagedata(pbc, package="survival") pbc$sex = factor(pbc$sex) pbc$stage = factor(pbc$stage) pbc$randomized<-with(pbc, !is.na(trt) & trt>0) biasmodel<-glm(randomized~age*edema,data=pbc,family=binomial) pbc$randprob<-fitted(biasmodel) if (is.null(pbc$albumin)) pbc$albumin<-pbc$alb ##pre2.9.0 dpbc <- svydesign(id=~1, prob=~randprob, strata=~edema, data=subset(pbc,randomized)) model <- svycoxph(Surv(time,status>0)~ sex + protime + albumin + stage,design=dpbc) svycox.display(model)
library(dplyr) lung %>% mutate(status = as.integer(status == 1), sex = factor(sex), kk = factor(as.integer(pat.karno >= 70)), kk1 = factor(as.integer(pat.karno >= 60))) -> lung #TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data=lung, line = T) ## Survey data library(survey) data.design <- svydesign(id = ~1, data = lung, weights = ~1) #TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data = data.design, line = F)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.