Introducing jstable options

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  echo = TRUE, message = F, warning = F
)
library(jstable)
library(survival)
library(dplyr)

Introducing count_by, event options in TableSubgroupMultiCox

TableSubgroupMultiCox

lung %>%
  mutate(
    status = as.integer(status == 1),
    sex = factor(sex),
    kk = factor(as.integer(pat.karno >= 70)),
    kk1 = factor(as.integer(pat.karno >= 60)),
    ph.ecog = factor(ph.ecog)
  ) -> lung
lung.label <- mk.lev(lung)
lung.label <- lung.label %>%
  mutate(
    val_label = case_when(
      variable == "sex" & level == "1" ~ "Male",
      variable == "sex" & level == "2" ~ "Female",
      variable == "kk" & level == "0" ~ "No",
      variable == "kk" & level == "1" ~ "Yes",
      variable == "kk1" & level == "0" ~ "No",
      variable == "kk1" & level == "1" ~ "Yes",
      TRUE ~ val_label
    )
  )

Counting the Number of Independent Variables for Comparison

The default option for count_by is set to NULL. By specifying an independent variable in the count_by option, the table will display the counts for each level of the independent variable.

TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data = lung, time_eventrate = 100, line = TRUE, cluster = "inst", strata = "inst", weights = "age", event = FALSE, count_by = "sex", labeldata = lung.label)

Calculate crude incidence rate of event

The default value for the event option is set to FALSE. By setting event to TRUE, the table will display the crude incidence rate of events. This rate is calculated using the number of events as the numerator and the count of the independent variable as the denominator.(Different from Kaplan-Meier Estimates)

TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data = lung, time_eventrate = 100, line = TRUE, cluster = "inst", strata = "inst", weights = "age", event = TRUE, count_by = "sex", labeldata = lung.label)

Using both count_by and event option is also available

By using both count_by and event option, the table will display crude incidence rate and the counts for each level of the independant variable.

TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data = lung, time_eventrate = 100, line = TRUE, cluster = "inst", strata = "inst", weights = "age", event = TRUE, count_by = NULL, labeldata = lung.label)

Introducing pairwise option

Introducing pairwise, pairwise.showtest option in CreateTableOneJS

The default value for the pairwise option is FALSE. By setting pairwise to TRUE, the table will display p-values for pairwise comparisons of stratified groups.

CreateTableOneJS(vars = names(lung), strata = "ph.ecog", data = lung, showAllLevels = F, labeldata = lung.label, Labels = T, pairwise = T)

By setting pairwise.showtest option to TRUE, the table will display test used to calculate p-values for pairwise comparisons of stratified groups. Default test for categorical variables are chi-sq test and continuous variables are t-test.

CreateTableOneJS(vars = names(lung), strata = "ph.ecog", data = lung, showAllLevels = F, labeldata = lung.label, Labels = T, pairwise = T, pairwise.showtest = T)

Introducing pairwise option in svyCreateTableOneJS

The default value for the pairwise option is FALSE. By setting pairwise to TRUE, the table will display p-values for pairwise comparisons of stratified groups.

library(survey)
data(nhanes)
nhanes$SDMVPSU <- as.factor(nhanes$SDMVPSU)
nhanes$race <- as.factor(nhanes$race)
nhanes$RIAGENDR <- as.factor(nhanes$RIAGENDR)
a.label <- mk.lev(nhanes)
a.label <- a.label %>%
  dplyr::mutate(val_label = case_when(
    variable == "race" & level == "1" ~ "White",
    variable == "race" & level == "2" ~ "Black",
    variable == "race" & level == "3" ~ "Hispanic",
    variable == "race" & level == "4" ~ "Asian",
    TRUE ~ val_label
  ))
nhanesSvy <- svydesign(ids = ~SDMVPSU, strata = ~SDMVSTRA, weights = ~WTMEC2YR, nest = TRUE, data = nhanes)

svyCreateTableOneJS(
  vars = c("HI_CHOL", "race", "agecat", "RIAGENDR"),
  strata = "race", data = nhanesSvy, factorVars = c("HI_CHOL", "race", "RIAGENDR"), labeldata = a.label, Labels = T, pairwise = T
)

By setting pairwise.showtest option to TRUE, the table will display test used to calculate p-values for pairwise comparisons of stratified groups.

svyCreateTableOneJS(
  vars = c("HI_CHOL", "race", "agecat", "RIAGENDR"),
  strata = "race", data = nhanesSvy, factorVars = c("HI_CHOL", "race", "RIAGENDR"), labeldata = a.label, Labels = T, pairwise = T, pairwise.showtest = T
)


Try the jstable package in your browser

Any scripts or data that you put into this service are public.

jstable documentation built on April 4, 2025, 6:02 a.m.