TableSubgroupMultiGLM: TableSubgroupMultiGLM: Multiple sub-group analysis table for...

TableSubgroupMultiGLMR Documentation

TableSubgroupMultiGLM: Multiple sub-group analysis table for GLM.

Description

Multiple sub-group analysis table for GLM.

Usage

TableSubgroupMultiGLM(
  formula,
  var_subgroups = NULL,
  var_cov = NULL,
  data,
  family = "binomial",
  decimal.estimate = 2,
  decimal.percent = 1,
  decimal.pvalue = 3,
  line = F
)

Arguments

formula

formula with survival analysis.

var_subgroups

Multiple sub-group variables for analysis, Default: NULL

var_cov

Variables for additional adjust, Default: NULL

data

Data or svydesign in survey package.

family

family, "gaussian" or "binomial"

decimal.estimate

Decimal for estimate, Default: 2

decimal.percent

Decimal for percent, Default: 1

decimal.pvalue

Decimal for pvalue, Default: 3

line

Include new-line between sub-group variables, Default: F

Details

This result is used to make forestplot.

Value

Multiple sub-group analysis table.

See Also

map bind

Examples

library(survival);library(dplyr)
lung %>% 
  mutate(status = as.integer(status == 1),
         sex = factor(sex),
         kk = factor(as.integer(pat.karno >= 70)),
         kk1 = factor(as.integer(pat.karno >= 60))) -> lung
TableSubgroupMultiGLM(status ~ sex, var_subgroups = c("kk", "kk1"), 
                      data=lung, line = TRUE, family = "binomial")

## survey design
library(survey)
data.design <- svydesign(id = ~1, data = lung)
TableSubgroupMultiGLM(status ~ sex, var_subgroups = c("kk", "kk1"), 
                      data = data.design, family = "binomial")

jstable documentation built on April 8, 2023, 9:09 a.m.