| application_mobilenet | R Documentation | 
MobileNet model architecture.
application_mobilenet(
  input_shape = NULL,
  alpha = 1,
  depth_multiplier = 1L,
  dropout = 0.001,
  include_top = TRUE,
  weights = "imagenet",
  input_tensor = NULL,
  pooling = NULL,
  classes = 1000L,
  classifier_activation = "softmax",
  ...
)
mobilenet_preprocess_input(x)
mobilenet_decode_predictions(preds, top = 5)
mobilenet_load_model_hdf5(filepath)
| input_shape | optional shape list, only to be specified if  | 
| alpha | controls the width of the network. 
 | 
| depth_multiplier | depth multiplier for depthwise convolution (also called the resolution multiplier) | 
| dropout | dropout rate | 
| include_top | whether to include the fully-connected layer at the top of the network. | 
| weights | 
 | 
| input_tensor | optional Keras tensor (i.e. output of  | 
| pooling | Optional pooling mode for feature extraction when
 | 
| classes | optional number of classes to classify images into, only to be
specified if  | 
| classifier_activation | A string or callable. The activation function to
use on the "top" layer. Ignored unless  | 
| ... | For backwards and forwards compatibility | 
| x | input tensor, 4D | 
| preds | Tensor encoding a batch of predictions. | 
| top | integer, how many top-guesses to return. | 
| filepath | File path | 
The mobilenet_preprocess_input() function should be used for image
preprocessing. To load a saved instance of a MobileNet model use
the mobilenet_load_model_hdf5() function. To prepare image input
for MobileNet use mobilenet_preprocess_input(). To decode
predictions use mobilenet_decode_predictions().
application_mobilenet() and mobilenet_load_model_hdf5() return a
Keras model instance. mobilenet_preprocess_input() returns image input
suitable for feeding into a mobilenet model. mobilenet_decode_predictions()
returns a list of data frames with variables class_name, class_description,
and score (one data frame per sample in batch input).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.