application_vgg | R Documentation |
VGG16 and VGG19 models for Keras.
application_vgg16(
include_top = TRUE,
weights = "imagenet",
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000,
classifier_activation = "softmax"
)
application_vgg19(
include_top = TRUE,
weights = "imagenet",
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000,
classifier_activation = "softmax"
)
include_top |
whether to include the 3 fully-connected layers at the top of the network. |
weights |
One of |
input_tensor |
Optional Keras tensor
(i.e. output of |
input_shape |
optional shape list, only to be specified if |
pooling |
Optional pooling mode for feature extraction
when
|
classes |
Optional number of classes to classify images into, only to be
specified if |
classifier_activation |
A string or callable. The activation function to
use on the "top" layer. Ignored unless |
Optionally loads weights pre-trained on ImageNet.
The imagenet_preprocess_input()
function should be used for image preprocessing.
Keras model instance.
- Very Deep Convolutional Networks for Large-Scale Image Recognition
## Not run:
library(keras)
model <- application_vgg16(weights = 'imagenet', include_top = FALSE)
img_path <- "elephant.jpg"
img <- image_load(img_path, target_size = c(224,224))
x <- image_to_array(img)
x <- array_reshape(x, c(1, dim(x)))
x <- imagenet_preprocess_input(x)
features <- model %>% predict(x)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.