callback_tensorboard | R Documentation |
This callback writes a log for TensorBoard, which allows you to visualize dynamic graphs of your training and test metrics, as well as activation histograms for the different layers in your model.
callback_tensorboard(
log_dir = NULL,
histogram_freq = 0,
batch_size = NULL,
write_graph = TRUE,
write_grads = FALSE,
write_images = FALSE,
embeddings_freq = 0,
embeddings_layer_names = NULL,
embeddings_metadata = NULL,
embeddings_data = NULL,
update_freq = "epoch",
profile_batch = 0
)
log_dir |
The path of the directory where to save the log files to be
parsed by Tensorboard. The default is |
histogram_freq |
frequency (in epochs) at which to compute activation histograms for the layers of the model. If set to 0, histograms won't be computed. |
batch_size |
size of batch of inputs to feed to the network for histograms computation. No longer needed, ignored since TF 1.14. |
write_graph |
whether to visualize the graph in Tensorboard. The log
file can become quite large when write_graph is set to |
write_grads |
whether to visualize gradient histograms in TensorBoard.
|
write_images |
whether to write model weights to visualize as image in Tensorboard. |
embeddings_freq |
frequency (in epochs) at which selected embedding layers will be saved. |
embeddings_layer_names |
a list of names of layers to keep eye on. If
|
embeddings_metadata |
a named list which maps layer name to a file name in which metadata for this embedding layer is saved. See the details about the metadata file format. In case if the same metadata file is used for all embedding layers, string can be passed. |
embeddings_data |
Data to be embedded at layers specified in
|
update_freq |
|
profile_batch |
Profile the batch to sample compute characteristics. By default, it will disbale profiling. Set profile_batch=2 profile the second batch. Must run in TensorFlow eager mode. (TF >= 1.14) |
TensorBoard is a visualization tool provided with TensorFlow.
You can find more information about TensorBoard here.
When using a backend other than TensorFlow, TensorBoard will still work (if you have TensorFlow installed), but the only feature available will be the display of the losses and metrics plots.
Other callbacks:
callback_csv_logger()
,
callback_early_stopping()
,
callback_lambda()
,
callback_learning_rate_scheduler()
,
callback_model_checkpoint()
,
callback_progbar_logger()
,
callback_reduce_lr_on_plateau()
,
callback_remote_monitor()
,
callback_terminate_on_naan()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.