R/lav_model_hessian.R

Defines functions lav_model_hessian_complex lav_model_hessian

# numeric approximation of the Hessian
# using an analytic gradient
lav_model_hessian <- function(lavmodel = NULL,
                              lavsamplestats = NULL,
                              lavdata = NULL,
                              lavoptions = NULL,
                              lavcache = NULL,
                              group.weight = TRUE,
                              ceq.simple = FALSE,
                              h = 1e-06) {
  estimator <- lavmodel@estimator

  # catch numerical gradient
  if (lavoptions$optim.gradient == "numerical") {
    obj.f <- function(x) {
      lavmodel2 <- lav_model_set_parameters(lavmodel, x = x)
      lav_model_objective(
        lavmodel = lavmodel2,
        lavsamplestats = lavsamplestats, lavdata = lavdata
      )[1]
    }
    x <- lav_model_get_parameters(lavmodel = lavmodel)
    Hessian <- numDeriv::hessian(func = obj.f, x = x)
    return(Hessian)
  }

  # computing the Richardson extrapolation
  if (!ceq.simple && .hasSlot(lavmodel, "ceq.simple.only") &&
    lavmodel@ceq.simple.only) {
    npar <- lavmodel@nx.unco
    type.glist <- "unco"
  } else {
    npar <- lavmodel@nx.free
    type.glist <- "free"
  }
  Hessian <- matrix(0, npar, npar)
  x <- lav_model_get_parameters(lavmodel = lavmodel)
  if (!ceq.simple && .hasSlot(lavmodel, "ceq.simple.only") &&
    lavmodel@ceq.simple.only) {
    # unpack
    x <- drop(x %*% t(lavmodel@ceq.simple.K))
  }
  for (j in seq_len(npar)) {
    # FIXME: the number below should vary as a function of 'x[j]'
    h.j <- h
    x.left <- x.left2 <- x.right <- x.right2 <- x
    x.left[j] <- x[j] - h.j
    x.left2[j] <- x[j] - 2 * h.j
    x.right[j] <- x[j] + h.j
    x.right2[j] <- x[j] + 2 * h.j

    g.left <-
      lav_model_gradient(
        lavmodel = lavmodel,
        GLIST = lav_model_x2GLIST(
          lavmodel =
            lavmodel, type = type.glist,
          x.left
        ),
        lavsamplestats = lavsamplestats,
        lavdata = lavdata,
        lavcache = lavcache,
        type = "free",
        group.weight = group.weight,
        ceq.simple = ceq.simple
      )
    g.left2 <-
      lav_model_gradient(
        lavmodel = lavmodel,
        GLIST = lav_model_x2GLIST(
          lavmodel =
            lavmodel, type = type.glist,
          x.left2
        ),
        lavsamplestats = lavsamplestats,
        lavdata = lavdata,
        lavcache = lavcache,
        type = "free",
        group.weight = group.weight,
        ceq.simple = ceq.simple
      )

    g.right <-
      lav_model_gradient(
        lavmodel = lavmodel,
        GLIST = lav_model_x2GLIST(
          lavmodel =
            lavmodel, type = type.glist,
          x.right
        ),
        lavsamplestats = lavsamplestats,
        lavdata = lavdata,
        lavcache = lavcache,
        type = "free",
        group.weight = group.weight,
        ceq.simple = ceq.simple
      )

    g.right2 <-
      lav_model_gradient(
        lavmodel = lavmodel,
        GLIST = lav_model_x2GLIST(
          lavmodel =
            lavmodel, type = type.glist,
          x.right2
        ),
        lavsamplestats = lavsamplestats,
        lavdata = lavdata,
        lavcache = lavcache,
        type = "free",
        group.weight = group.weight,
        ceq.simple = ceq.simple
      )

    Hessian[, j] <- (g.left2 - 8 * g.left + 8 * g.right - g.right2) / (12 * h.j)
  }

  # check if Hessian is (almost) symmetric, as it should be
  max.diff <- max(abs(Hessian - t(Hessian)))
  if (max.diff > 1e-05 * max(diag(Hessian))) {
    # hm, Hessian is not symmetric -> WARNING!
    lav_msg_warn(gettextf(
    "Hessian is not fully symmetric. Max diff = %1$s (Max diag Hessian = %2$s)",
    max.diff, max(diag(Hessian))))
    # FIXME: use numDeriv::hessian instead?
  }
  Hessian <- (Hessian + t(Hessian)) / 2.0

  Hessian
}

# if only chol would accept a complex matrix...
lav_model_hessian_complex <- function(lavmodel = NULL,
                                      lavsamplestats = NULL,
                                      lavdata = NULL,
                                      lavcache = NULL,
                                      group.weight = TRUE) {
  gradf <- function(x) {
    GLIST <- lav_model_x2GLIST(lavmodel = lavmodel, x = x)
    dx <- lav_model_gradient(
      lavmodel = lavmodel,
      GLIST = GLIST,
      lavsamplestats = lavsamplestats,
      lavdata = lavdata,
      lavcache = lavcache,
      type = "free",
      group.weight = group.weight
    )
    dx
  }

  x <- lav_model_get_parameters(lavmodel = lavmodel)
  Hessian <- lav_func_jacobian_complex(func = gradf, x = x)

  Hessian
}

Try the lavaan package in your browser

Any scripts or data that you put into this service are public.

lavaan documentation built on Sept. 27, 2024, 9:07 a.m.