Nothing
#' Marginal predictions in the natural scale of a pre-transformed outcome
#'
#' The function computes the predicted values of the longitudinal marker
#' (in each latent class if ng>1) for a specified profile of covariates, when a
#' non-parameterized pre-transformation was applied (e.g., log, square root).
#' A Gauss-Hermite or Monte-Carlo integration is
#' used to numerically compute the back-transformed predictions.
#'
#' @param x an object inheriting from class \code{hlme} representing a general
#' latent class mixed model.
#' @param newdata data frame containing the data from which predictions are to
#' be computed. The data frame should include at least all the covariates listed
#' in x$Xnames2. Names in the data frame should be exactly x$Xnames2, i.e.,
#' the names of covariates specified in \code{hlme} calls.
#' @param var.time A character string containing the name of the variable that
#' corresponds to time in the data frame (x axis in the plot).
#' @param methInteg optional integer specifying the type of numerical
#' integration. Value 0 (by default) specifies a Gauss-Hermite integration which
#' is very rapid but neglects the correlation between the predicted values (in
#' presence of random-effects). Value 1 refers to a Monte-Carlo integration
#' which is slower but correctly accounts for the correlation between the
#' predicted values.
#' @param nsim number of points used in the numerical integration.
#' For methInteg=0, nsim should be chosen among
#' the following values: 5, 7, 9, 15, 20, 30, 40 or 50 (nsim=20 by default). If
#' methInteg=1, nsim should be relatively important (more than 200).
#' @param draws boolean specifying whether confidence bands should be computed.
#' If draws=TRUE, a Monte Carlo approximation of the posterior distribution of
#' the predicted values is computed and the median, 2.5\% and 97.5\% percentiles
#' are given. Otherwise, the predicted values are computed at the point
#' estimate. By default, draws=FALSE.
#' @param ndraws integer. If draws=TRUE, ndraws specifies the number of draws
#' that should be generated to approximate the posterior distribution of the
#' predicted values. By default, ndraws=2000.
#' @param na.action Integer indicating how NAs are managed. The default is 1
#' for 'na.omit'. The alternative is 2 for 'na.fail'. Other options such as
#' 'na.pass' or 'na.exclude' are not implemented in the current version.
#' @param back function to back-transform the outcome in the original scale.
#' @param \dots further arguments to be passed to or from other methods. They
#' are ignored in this function.
#' @return An object of class \code{predictY}.
#'
#' @examples
#' data_lcmm$transfYdep2 <- sqrt(30 - data_lcmm$Ydep2)
#' m1 <- hlme(transfYdep2 ~ Time, random=~ Time, subject="ID", data = data_lcmm)
#' pred1 <- predictYback(m1, newdata = data.frame(Time = seq(0, 3, 0.1)),
#' var.time = "Time", back = function(x) {30 - x^2})
#' plot(pred1)
#'
#' @export
#'
predictYback <- function(x, newdata, var.time, methInteg = 0, nsim = 20,
draws = FALSE, ndraws = 2000, na.action = 1, back, ...){
if(missing(newdata)) stop("The argument newdata should be specified")
if(missing(x)) stop("The argument x should be specified")
if (!inherits(x, "hlme")) stop("use only with \"hlme\" objects")
if (!all(x$Xnames2 %in% c(colnames(newdata),"intercept"))) {
cat("newdata should at least include the following covariates: ", "\n")
cat(x$Xnames2[-1], "\n")}
if (!all(x$Xnames2 %in% c(colnames(newdata), "intercept"))) stop("see above")
if (!inherits(newdata, "data.frame")) stop("newdata should be a data.frame object")
if (!(methInteg %in% c(0,1))) stop("The integration method must be either 0 for Gauss-Hermite or 1 for Monte-Carlo")
if ((methInteg == 0) & (!(nsim %in% c(5,7,9,15,20,30,40,50)))) stop("For Gauss-Hermite integration method, 'nsim' should be either 5,7,9,15,20,30,40 or 50")
call_fixed <- x$call$fixed[3]
if(is.null(x$call$random)) {call_random <- -1} else call_random <- x$call$random[2]
if(is.null(x$call$classmb)) {call_classmb <- -1} else call_classmb <- x$call$classmb[2]
if(is.null(x$call$mixture)) {call_mixture <- -1} else call_mixture <- x$call$mixture[2]
if(x$conv %in% c(1, 2, 3)){
if(x$Xnames2[1] != "intercept"){
newdata1 <- newdata[, x$Xnames2]
colnames(newdata1) <- x$Xnames
newdata1 <- data.frame(newdata1)
}else{
newdata1 <- cbind(rep(1, length = length(newdata[, 1])), newdata[, x$Xnames2[-1]])
colnames(newdata1) <- c("intercept", x$Xnames2[-1])
newdata1 <- data.frame(newdata1)
}
if((x$conv == 2) & (draws == TRUE))
{
cat("No confidence interval will be provided since the program did
not converge properly \n")
draws <- FALSE
}
if((x$conv == 3) & (draws == TRUE))
{
cat("No confidence interval will be provided since the program
did not converge properly \n")
draws <- FALSE
}
X1 <- NULL
X2 <- NULL
b1 <- NULL
b2 <- NULL
if(!(na.action %in% c(1, 2))) stop("only 1 for 'na.omit' or 2 for
'na.fail' are required in na.action argument")
if(na.action == 1){
na.action <- na.omit
}else{
na.action <- na.fail
}
## transform to factor is the variable appears in levels$levelsdata
for(v in colnames(newdata1))
{
if(v %in% names(x$levels$levelsdata))
{
if(!is.null(x$levels$levelsdata[[v]]))
{
newdata1[, v] <- factor(newdata1[, v],
levels = x$levels$levelsdata[[v]])
}
}
}
call_fixed <- gsub("factor","",call_fixed)
call_random <- gsub("factor","",call_random)
call_classmb <- gsub("factor","",call_classmb)
call_mixture <- gsub("factor","",call_mixture)
call_mixture <- formula(paste("~",call_mixture,sep=""))
call_random <- formula(paste("~",call_random,sep=""))
call_classmb <- formula(paste("~",call_classmb,sep=""))
## Traitement des donnees manquantes
mcall <- match.call()[c(1, match(c("data", "subset", "na.action"),
names(match.call()), 0))]
mcall$na.action <- na.action
mcall$data <- newdata1
## fixed
m <- mcall
m$formula <- formula(paste("~", call_fixed, sep=""))
m[[1]] <- as.name("model.frame")
m <- eval(m, sys.parent())
na.fixed <- attr(m, "na.action")
## mixture
if((length(attr(terms(call_mixture),"term.labels")) +
attr(terms(call_mixture),"intercept")) > 0){
id.X_mixture <- 1
m <- mcall
m$formula <- call_mixture
m[[1]] <- as.name("model.frame")
m <- eval(m, sys.parent())
na.mixture <- attr(m,"na.action")
}else{
id.X_mixture <- 0
na.mixture <- NULL
}
## random
if((length(attr(terms(call_random), "term.labels")) +
attr(terms(call_random),"intercept")) > 0){
id.X_random <- 1
m <- mcall
m$formula <- call_random
m[[1]] <- as.name("model.frame")
m <- eval(m, sys.parent())
na.random <- attr(m,"na.action")
}else{
id.X_random <- 0
na.random <- NULL
}
## classmb
if((length(attr(terms(call_classmb),"term.labels")) +
attr(terms(call_classmb),"intercept")) > 0){
id.X_classmb <- 1
m <- mcall
m$formula <- call_classmb
m[[1]] <- as.name("model.frame")
m <- eval(m, sys.parent())
na.classmb <- attr(m,"na.action")
}else{
id.X_classmb <- 0
na.classmb <- NULL
}
## cor
na.cor <- NULL
if(length(x$N) > 5)
{
if(x$N[6] > 0)
{
z <- which(x$idcor0 == 1)
var.cor <- newdata1[, x$Xnames[z]]
na.cor <- which(is.na(var.cor))
}
}
##var.time
if(!missing(var.time))
{
if(!(var.time %in% colnames(newdata))) stop("'var.time' should
be included in newdata")
if(var.time %in% colnames(newdata1))
{
times <- newdata1[, var.time, drop = FALSE]
}
else
{
times <- newdata[, var.time, drop = FALSE]
}
}
else
{
times <- newdata[, 1, drop = FALSE]
}
## Table sans donnees manquante: newdata
na.action <- unique(c(na.fixed, na.mixture, na.random, na.classmb, na.cor))
if(length(na.action)){
newdata1 <- newdata1[-na.action, ]
times <- times[-na.action, , drop = FALSE]
}
## create one data frame for each formula (useful with factors)
newdata1fixed <- newdata1
for(v in colnames(newdata1fixed))
{
if(v %in% names(x$levels$levelsfixed))
{
if(!is.null(x$levels$levelsfixed[[v]]))
{
newdata1fixed[, v] <- factor(newdata1fixed[, v],
levels = x$levels$levelsfixed[[v]])
if(any(is.na(newdata1fixed[, v]))) stop(paste("Wrong factor
level in variable", v))
}
}
}
newdata1mixture <- newdata1
for(v in colnames(newdata1mixture))
{
if(v %in% names(x$levels$levelsmixture))
{
if(!is.null(x$levels$levelsmixture[[v]]))
{
newdata1mixture[, v] <- factor(newdata1mixture[, v],
levels = x$levels$levelsmixture[[v]])
if(any(is.na(newdata1mixture[, v]))) stop(paste("Wrong
factor level in variable", v))
}
}
}
newdata1random <- newdata1
for(v in colnames(newdata1random))
{
if(v %in% names(x$levels$levelsrandom))
{
if(!is.null(x$levels$levelsrandom[[v]]))
{
newdata1random[, v] <- factor(newdata1random[, v],
levels = x$levels$levelsrandom[[v]])
if(any(is.na(newdata1random[, v]))) stop(paste("Wrong factor
level in variable", v))
}
}
}
newdata1classmb <- newdata1
for(v in colnames(newdata1classmb))
{
if(v %in% names(x$levels$levelsclassmb))
{
if(!is.null(x$levels$levelsclassmb[[v]]))
{
newdata1classmb[, v] <- factor(newdata1classmb[, v],
levels = x$levels$levelsclassmb[[v]])
if(any(is.na(newdata1classmb[, v]))) stop(paste("Wrong
factor level in variable", v))
}
}
}
## Construction de nouvelles var eplicatives sur la nouvelle table
## fixed
X_fixed <- model.matrix(formula(paste("~", call_fixed, sep = "")),
data = newdata1fixed)
if(colnames(X_fixed)[1] == "(Intercept)"){
colnames(X_fixed)[1] <- "intercept"
int.fixed <- 1
}
## mixture
if(id.X_mixture == 1){
X_mixture <- model.matrix(call_mixture, data = newdata1mixture)
if(colnames(X_mixture)[1] == "(Intercept)"){
colnames(X_mixture)[1] <- "intercept"
int.mixture <- 1
}
}
## random
if(id.X_random == 1){
X_random <- model.matrix(call_random, data = newdata1random)
if(colnames(X_random)[1] == "(Intercept)"){
colnames(X_random)[1] <- "intercept"
int.random <- 1
}
}
## classmb
if(id.X_classmb == 1){
X_classmb <- model.matrix(call_classmb, data = newdata1classmb)
colnames(X_classmb)[1] <- "intercept"
}
##cor
if(x$N[5] > 0) #on reprend la variable de temps de cor
{
z <- which(x$idcor0 == 1)
var.cor <- newdata1[, x$Xnames[z]]
}
## Construction des var expli
newdata1 <- X_fixed
colX <- colnames(X_fixed)
if(id.X_mixture == 1){
for(i in 1:length(colnames(X_mixture))){
if((colnames(X_mixture)[i] %in% colnames(newdata1)) == FALSE){
newdata1 <- cbind(newdata1, X_mixture[, i])
colnames(newdata1) <- c(colX, colnames(X_mixture)[i])
colX <- colnames(newdata1)
}
}
}
if(id.X_random == 1){
for(i in 1:length(colnames(X_random))){
if((colnames(X_random)[i] %in% colnames(newdata1)) == FALSE){
newdata1 <- cbind(newdata1, X_random[, i])
colnames(newdata1) <- c(colX,colnames(X_random)[i])
colX <- colnames(newdata1)
}
}
}
if(id.X_classmb == 1){
for(i in 1:length(colnames(X_classmb))){
if((colnames(X_classmb)[i] %in% colnames(newdata1)) == FALSE){
newdata1 <- cbind(newdata1, X_classmb[,i])
colnames(newdata1) <- c(colX, colnames(X_classmb)[i])
colX <- colnames(newdata1)
}
}
}
if(x$N[5]>0)
{
if((x$idg0[z] == 0) & (x$idea0[z] == 0) & (x$idprob0[z] == 0))
{
newdata1 <- cbind(newdata1, var.cor)
colnames(newdata1) <- c(colX, x$Xnames[z])
colX <- colnames(newdata1)
}
}
nv <- length(x$idg0)
maxmes <- length(newdata1[, 1])
npm <- length(x$best)
best <- x$best
if((x$idiag == 0) & (x$N[3] > 0)) best[x$N[1] + x$N[2] + 1:x$N[3]] <- x$cholesky
if((x$idiag == 1) & (x$N[3] > 0)) best[x$N[1] + x$N[2] + 1:x$N[3]] <- sqrt(best[x$N[1] + x$N[2] + 1:x$N[3]])
nwg <- x$N[4]
ncor <- x$N[5]
## integration
points <- rep(0, x$ng * nsim * maxmes)
weights <- rep(0, nsim)
#browser()
if (!draws){ # without confidence interval
out <- .Fortran(C_integ,
as.double(newdata1),
as.integer(x$idprob0),
as.integer(x$idea0),
as.integer(x$idg0),
as.integer(x$idcor0),
as.integer(x$ng),
as.integer(ncor),
as.integer(nv),
as.integer(maxmes),
as.integer(x$idiag),
as.integer(nwg),
as.integer(npm),
as.double(best),
as.integer(nsim),
as.integer(methInteg),
points=as.double(points),
weights = as.double(weights))
out$points[which(out$points == 9999)] <- NA
out$weights[which(out$weights == 9999)] <- NA
backpoints <- back(out$points)
Ypred <- matrix(NA, nrow = maxmes, ncol = x$ng)
if(x$ng == 1) colnames(Ypred) <- "Ypred"
if(x$ng > 1) colnames(Ypred) <- paste("Ypred_class",
1:x$ng, sep = "")
for(g in 1:x$ng)
{
gpoints <- matrix(backpoints[(g - 1) * maxmes * nsim
+ 1:(maxmes * nsim)], maxmes, nsim)
wgpoints <- sweep(gpoints, 2, out$weights, "*")
gpred <- apply(wgpoints, 1, sum)
Ypred[, g] <- gpred
}
} else { # with CI based on Monte Carlo draws
ndraws <- as.integer(ndraws)
ydraws <- NULL
posfix <- eval(x$call$posfix)
if(ndraws>0)
{
Mat <- matrix(0, ncol = npm, nrow = npm)
Mat[upper.tri(Mat, diag = TRUE)] <- x$V
if(length(posfix))
{
Mat2 <- Mat[-posfix, -posfix]
Chol2 <- chol(Mat2)
Chol <- matrix(0, npm, npm)
Chol[setdiff(1:npm, posfix), setdiff(1:npm, posfix)] <- Chol2
Chol <- t(Chol)
}
else
{
Chol <- chol(Mat)
Chol <- t(Chol)
}
}
ydraws <- matrix(NA, maxmes * x$ng, ndraws)
for (j in 1:ndraws)
{
bdraw <- rnorm(npm)
bdraw <- best + Chol %*% bdraw
out <- .Fortran(C_integ,
as.double(newdata1),
as.integer(x$idprob0),
as.integer(x$idea0),
as.integer(x$idg0),
as.integer(x$idcor0),
as.integer(x$ng),
as.integer(ncor),
as.integer(nv),
as.integer(maxmes),
as.integer(x$idiag),
as.integer(nwg),
as.integer(npm),
as.double(bdraw),
as.integer(nsim),
as.integer(methInteg),
points=as.double(points),
weights = as.double(weights))
out$points[which(out$points == 9999)] <- NA
out$weights[which(out$weights == 9999)] <- NA
backpoints <- back(out$points)
pred <- matrix(NA, nrow = maxmes, ncol = x$ng)
for(g in 1:x$ng)
{
gpoints <- matrix(backpoints[(g - 1) * maxmes * nsim + 1:(maxmes * nsim)], maxmes, nsim)
wgpoints <- sweep(gpoints, 2, out$weights, "*")
gpred <- apply(wgpoints, 1, sum)
pred[, g] <- gpred
}
ydraws[, j] <- as.numeric(pred)
}
f <- function(x) {
quantile(x[!is.na(x)], probs = c(0.025, 0.5, 0.975))
}
ydistr <- apply(ydraws, 1, FUN = f)
Ypred_50 <- matrix(ydistr[2, ], ncol = x$ng, byrow = FALSE)
Ypred_2.5 <- matrix(ydistr[1, ], ncol = x$ng, byrow = FALSE)
Ypred_97.5 <- matrix(ydistr[3, ], ncol = x$ng, byrow = FALSE)
Ypred <- cbind(Ypred_50, Ypred_2.5, Ypred_97.5)
if (x$ng == 1){
colnames(Ypred) <- c("Ypred_50","Ypred_2.5","Ypred_97.5")
} else {
colnames(Ypred) <- c(paste("Ypred_50_class", 1:x$ng, sep = ""), paste("Ypred_2.5_class", 1:x$ng, sep = ""), paste("Ypred_97.5_class", 1:x$ng, sep = ""))
}
}
res.list <- NULL
res.list$pred <- Ypred
res.list$times <- times
}
else #cas xconv != 1 ou 2
{
cat("Predictions can not be computed since the program stopped abnormally. \n")
res.list <- list(pred = NA, times = NA)
}
class(res.list) <- "predictY"
return(res.list)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.