tests/predsim.R

## compare range, average, etc. of simulations to
## conditional and unconditional prediction
library(lme4)
do.plot <- FALSE

if (.Platform$OS.type != "windows") {
## use old (<=3.5.2) sample() algorithm if necessary
if ("sample.kind" %in% names(formals(RNGkind))) {
    suppressWarnings(RNGkind("Mersenne-Twister", "Inversion", "Rounding"))
}

fm1 <- lmer(Reaction~Days+(1|Subject),sleepstudy)
set.seed(101)
pp <- predict(fm1)
rr <- range(usim2 <- simulate(fm1,1,use.u=TRUE)[[1]])
stopifnot(all.equal(rr,c(159.3896,439.1616),tolerance=1e-6))
if (do.plot) {
    plot(pp,ylim=rr)
    lines(sleepstudy$Reaction)
    points(simulate(fm1,1)[[1]],col=4)
    points(usim2,col=2)
}

set.seed(101)

## conditional prediction
ss <- simulate(fm1,1000,use.u=TRUE)
ss_sum <- t(apply(ss,1,quantile,c(0.025,0.5,0.975)))
plot(pp)
matlines(ss_sum,col=c(1,2,1),lty=c(2,1,2))
stopifnot(all.equal(ss_sum[,2],pp,tolerance=5e-3))

## population-level prediction
pp2 <- predict(fm1,ReForm=NA)
ss2 <- simulate(fm1,1000,use.u=FALSE)
ss_sum2 <- t(apply(ss2,1,quantile,c(0.025,0.5,0.975)))

if (do.plot) {
    plot(pp2,ylim=c(200,400))
    matlines(ss_sum2,col=c(1,2,1),lty=c(2,1,2))
}

stopifnot(all.equal(ss_sum2[,2],pp2,tolerance=8e-3))

## predict(...,newdata=...) on models with derived variables in the random effects
## e.g. (f:g, f/g)
set.seed(101)
d <- expand.grid(f=factor(letters[1:10]),g=factor(letters[1:10]),
                 rep=1:10)
d$y <- rnorm(nrow(d))
m1 <- lmer(y~(1|f:g),d)
p1A <- predict(m1)
p1B <- predict(m1,newdata=d)
stopifnot(all.equal(p1A,p1B))
m2 <- lmer(y~(1|f/g),d)
p2A <- predict(m2)
p2B <- predict(m2,newdata=d)
stopifnot(all.equal(p2A,p2B))

## with numeric grouping variables
dn <- transform(d,f=as.numeric(f),g=as.numeric(g))
m1N <- update(m1,data=dn)
p1NA <- predict(m1N)
p1NB <- predict(m1N,newdata=dn)
stopifnot(all.equal(p1NA,p1NB))

## simulate with modified parameters
set.seed(1)
s1 <- simulate(fm1)
set.seed(1)
s2 <- simulate(fm1,newdata=model.frame(fm1),
               newparams=getME(fm1,c("theta","beta","sigma")))
all.equal(s1,s2)

fm0 <- update(fm1,.~.-Days)
##
## sim() -> simulate() -> refit() -> deviance
##

## predictions and simulations with offsets

set.seed(101)
d <- data.frame(y=rpois(100,5),x=rlnorm(100,1,1),
                f=factor(sample(10,size=100,replace=TRUE)))
gm1 <- glmer(y~offset(log(x))+(1|f),data=d,
             family=poisson)
s1 <- simulate(gm1)
} ## skip on windows (for speed)

Try the lme4 package in your browser

Any scripts or data that you put into this service are public.

lme4 documentation built on June 22, 2021, 9:07 a.m.