Nothing
source("/Users/nicholeyang/Desktop/ed/code/EM.R") load("/Users/nicholeyang/Desktop/ed/data/zstrong.RData") library(mvtnorm)
# function for simulate data sim.data <- function(n, w, U) { # w: the true weight # mu: a k*m matrix # dimension of an obs. m = nrow(U[[1]]) # k: number of classes k = length(w) # generate true class variable Z = sample(1:k, n, prob = w, replace = T) # store simulated data X = matrix(NA, ncol = m, nrow = n) for (i in 1:n){ # true class for obs. i j = Z[i] X[i, ] = rmvnorm(1,mean = rep(0,m), sigma = U[[j]]) } res = list(X = X, Z = Z) return(res) }
# simulate data set.seed(215) n <- 1e4 w <- c(0.6,0.3,0.1) I <- diag(c(1,1,1)) U <- list(U1 = matrix(1,3,3)+I, U2 = crossprod(rbind(c(1,1,0), c(0,1,1)))+I, U3 = rbind(2*diag(3))+I) dt <- sim.data(n, w, U) X <- dt$X
# initialization w.init <- c(0.3, 0.4, 0.3) U.init <- list(U1 = matrix(c(1, 0.1, 0.3, 0.1, 1, 0, 0.3, 0 ,1), ncol = 3, nrow =3), U2 = matrix(c(1, 0.1, 0.9, 0.1, 1, 0, 0.9, 0 ,1), ncol = 3, nrow =3), U3 = diag(3)) # R version res.R <- EM.fit(X, w.init, U.init, maxiter = 5000, tol = 1e-7, verbose = FALSE) ## Rcpp version res.cpp = mashr:::fit_teem_rcpp(X,w.init,simplify2array(U.init), 5000, 1e-7, FALSE)
# R version result res.R$w res.R$U tail(res.R$progress$obj) length(res.R$progress$obj) # Rcpp result res.cpp$w res.cpp$U tail(res.cpp$objective) length(res.cpp$objective)
# The previous Gtex 5 tissue data set.seed(215) test_index = sample(1:nrow(zstrong), 3000, replace = FALSE) test = zstrong[test_index, ] train = zstrong[-test_index,] dim(test) dim(train) # Choose components = 5 to fit; Use random initialization s = 5 w.true = rep(1/s, s) indx = sample(1:s, nrow(train), replace = TRUE, prob = w.true) U.init = c() w.init = rep(NA, s) # Calculate the empirical covariance matrix. The initialization for U = empirical Sigma + I for (i in 1:s){ w.init[i] = sum(indx ==i)/nrow(train) dt = train[indx ==i, ] Sigma = matrix(t(dt) %*% dt/nrow(dt), nrow = 5, ncol = 5) U.init[[i]] = Sigma + diag(5) }
# ED in mashr train.mash = mashr:::mash_set_data(train, Shat = 1) U.pca = mashr:::cov_pca(train.mash, 4) start= proc.time() res.mashr = mashr:::cov_ed(train.mash, U.pca) end = proc.time() runtime.mashr = end - start # newEM R version start= proc.time() res.R = EM.fit(train, w.init, U.init, maxiter = 5000, tol = 1e-7, verbose = FALSE) end = proc.time() runtime.R = end - start # newEM CPP start= proc.time() res.cpp = mashr:::fit_teem_rcpp(train , w.init,simplify2array(U.init), 5000, 1e-7, FALSE) end = proc.time() runtime.cpp = end - start
runtime.mashr runtime.R runtime.cpp
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.