Description Usage Arguments Value References See Also Examples
View source: R/matrixpls.predict.R
The matrixpls
method for the generic function predict
predict.
Predicts the reflective indicators of endogenous latent variables using
estimated model and data for the indicators of exogenous latent variables
1 2 3 4 5 6 7 8 |
object |
matrixpls estimation result object produced by the |
newData |
A data frame or a matrix containing data used for prediction. |
predictionType |
"exogenous" (default) predicts indicators from exogenous composites. "redundancy" and "communality" are alternative strategies described by Chin (2010). "composites" returns the composites calculated by multiplying the data with the weight matrix. |
means |
A vector of means of the original data used to calculate intercepts for the linear prediction equations. If not provided, calculated from the new data or assumed zero. |
... |
All other arguments are ignored. |
a matrix of predicted values for reflective indicators of endogenous latent variables or weighted composites of the indicators.
Wold, H. (1974). Causal flows with latent variables: Partings of the ways in the light of NIPALS modeling. European Economic Review, 5(1), 67–86. doi: 10.1016/0014-2921(74)90008-7
Chin, W. W. (2010). How to write up and report PLS analyses. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares (pp. 655–690). Berlin Heidelberg: Springer.
Other post-estimation functions:
ave()
,
cei()
,
cr()
,
effects.matrixpls()
,
fitSummary()
,
fitted.matrixpls()
,
gof()
,
htmt()
,
loadings()
,
r2()
,
residuals.matrixpls()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | # Run the customer satisfaction example form plspm
# load dataset satisfaction
data(satisfaction)
# inner model matrix
IMAG = c(0,0,0,0,0,0)
EXPE = c(1,0,0,0,0,0)
QUAL = c(0,1,0,0,0,0)
VAL = c(0,1,1,0,0,0)
SAT = c(1,1,1,1,0,0)
LOY = c(1,0,0,0,1,0)
inner = rbind(IMAG, EXPE, QUAL, VAL, SAT, LOY)
colnames(inner) <- rownames(inner)
# Reflective model
reflective<- matrix(
c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1),
27,6, dimnames = list(colnames(satisfaction)[1:27],colnames(inner)))
# empty formative model
formative <- matrix(0, 6, 27, dimnames = list(colnames(inner),
colnames(satisfaction)[1:27]))
satisfaction.model <- list(inner = inner,
reflective = reflective,
formative = formative)
# Estimation using covariance matrix
satisfaction.out <- matrixpls(cov(satisfaction[,1:27]),
model = satisfaction.model)
print(satisfaction.out)
# Predict indicators using means from the data
predict(satisfaction.out,
newData = satisfaction,
means= sapply(satisfaction, mean))
# Calculate composite scores
predict(satisfaction.out,
newData = satisfaction,
predictionType = "composites")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.