Description Usage Arguments Details Value See Also Examples
View source: R/matrixpls.postestimation.R
The matrixpls
method for the generic function cei
computes
composite equivalence indices (CEI) for the matrixpls
object. By
default, the composites are compared against unit-weighted composites.
1 |
object |
matrixpls estimation result object produced by the |
object2 |
Another |
... |
All other arguments are ignored. |
Composite equivalence indices quantify if two sets of composites calculated from the same data using different weight algorithms differ. Composites are matched by name and correlations for each pair are reported.
Composite equivalence indices as a vector
Other post-estimation functions:
ave()
,
cr()
,
effects.matrixpls()
,
fitSummary()
,
fitted.matrixpls()
,
gof()
,
htmt()
,
loadings()
,
predict.matrixpls()
,
r2()
,
residuals.matrixpls()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # Load the Tenenhaus et al 2005 model and data from semPLS
library(semPLS)
data(ECSImobi)
data(mobi)
# Reflective and empty formative model
reflective<- ECSImobi$M
formative <- t(reflective)
formative[] <- 0
# Estimation using covariance matrix
model <- list(inner = t(ECSImobi$D),
reflective = reflective,
formative = formative)
S <- cor(mobi)
matrixpls.ModeA <- matrixpls(S, model, innerEstim = innerEstim.centroid)
matrixpls.Fixed <- matrixpls(S, model, weightFun = weightFun.fixed)
cei(matrixpls.ModeA)
cei(matrixpls.ModeA, matrixpls.Fixed)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.