Nothing
##' MFSdistribution function creates a dynamic calculator which shows the commonly used probability distribution. Users can change the parameter to change the shape of distribution.
##'
##' This app includes the distributions for continuous variables (normal distribution, exponential distribution, and gamma distribution), for discrete variables (binomial distribution and Poisson distribution), and distributions derived from normal distribution (t distribution, chi-square distribution, and F distribution).
##' Please click "close" window to quit the application. No special packages are required.
##' @title MEPHAS Shiny application of the Statistical Distributions
##' @return The shiny web page of the statistical distribution
##'
##' @import shiny
##' @import ggplot2
##' @importFrom stats dchisq dnorm dt pbinom pnorm ppois qchisq qexp qf qgamma qnorm qt quantile rchisq rexp rf rgamma rnorm rt sd var
##' @importFrom utils head
##' @examples
##' # library(mephas)
##' # MFSdist()
##' @export
MFSdistribution<- function(){
#if (!requireNamespace("shiny", quietly = TRUE)) {
#stop("Package \"shiny\" needed for this function to work. Please install it.", call. = FALSE)}
#if (!requireNamespace("ggplot2", quietly = TRUE)) {
#stop("Package \"ggplot2\" needed for this function to work. Please install it.", call. = FALSE)}
####################
ui <- tagList(
navbarPage(
title = "Probability Distributions",
##---------- Panel 1 ---------
tabPanel("Continuous Random Variable",
###---------- 1.1 ---------
titlePanel("Normal Distribution (Gaussian Distribution)"),
tags$b("Parameters"),
tags$ul(
tags$li(HTML("μ: mean indicates the location")),
tags$li(HTML("σ: standard deviation (SD) indicates the variation"))
),
splitLayout(
wellPanel(style = "background-color: #ffffff;",
h4(tags$b("Normal Distribution (Mathematical-based)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("xlim", "Range of x-asis", value = 5, min = 1, max = 20)),
column(3, numericInput("ylim", "Range of y-asis", value = 0.5, min = 0.1, max = 1)),
column(3, numericInput("pr", "Area left to the line; Pr(X <= value)", value = 0.025, min = 0, max = 1, step = 0.05))),
fluidRow(
column(3, numericInput("mu", HTML("Mean (μ) "), value = 0, min = -100, max = 100)),
column(3, numericInput("sigma", HTML("Standard Deviation (σ)"), value = 1, min = 0.1, max = 10)),
column(3, numericInput("n", HTML("The space between N-fold SD"), value = 1, min = 0, max = 10))),
p(br()),
plotOutput("norm.plot", click = "plot_click", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("info"),
p(br()),
helpText("The position of x and the area (%) in blue"),
tableOutput("xs")
),
wellPanel(
h4(tags$b("Normal Distributed Sample (Simulation)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("bin", "Binwidth of histogram", value = 0.1, min = 0.01, max = 5, step = 0.1))),
fluidRow(
column(6, sliderInput("size", "Sample size", min = 0, max = 10000, value = 1000))),
plotOutput("norm.plot2", click = "plot_click2", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("info2"),
p(br()),
helpText("Sample mean and standard deviation"),
tableOutput("sum"),
verbatimTextOutput("data")
#>tags$b("The first 100 simulated values"),
#>dataTableOutput("table1")
)
),
###---------- 1.2 ---------
titlePanel("Exponential Distribution"),
tags$b("Parameter"),
tags$ul(
tags$li(HTML("r: rate or the inverse scale parameter"))),
splitLayout(
wellPanel(style = "background-color: #ffffff;",
h4(tags$b("Exponential Distribution (Mathematical)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("e.xlim", "Range of x-asis", value = 5, min = 1, max = 10, step = 0.5)),
column(3, numericInput("e.ylim", "Range of y-asis", value = 2.5, min = 0.1, max = 3, step = 0.1)),
column(3, numericInput("e.pr", "Area left to the line", value = 0.5, min = 0, max = 1, step = 0.01))),
fluidRow(
column(5, sliderInput("r", HTML("Parameter"), min = 0, max = 10, value =1, step = 0.1))),
plotOutput("e.plot", click = "plot_click9", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("e.info"),
p(br()),
helpText("The position of x"),
tableOutput("e")),
wellPanel(
h4(tags$b("Exponential Distributed Sample (Simulation)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("e.bin", "Binwidth of histogram", value = 0.1, min = 0.01, max = 5, step = 0.1))),
fluidRow(
column(6, sliderInput("e.size", "Sample size", min = 0, max = 10000, value = 1000))),
plotOutput("e.plot2", click = "plot_click10", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("e.info2"),
p(br()),
helpText("Sample mean and standard deviation"),
tableOutput("e.sum")
#>tags$b("The first 100 simulated values"),
#>dataTableOutput("table5")
)
),
###---------- 1.3 ---------
titlePanel("Gamma Distribution"),
tags$b("Parameters"),
tags$ul(
tags$li(HTML("α: shape parameter")),
tags$li(HTML("θ: scale parameter"))
),
tags$b("Notes"),
tags$ul(
tags$li(HTML("β=1/θ: rate parameter")),
tags$li(HTML("mean is α*θ"))
),
splitLayout(
wellPanel(style = "background-color: #ffffff;",
h4(tags$b("Gamma Distribution (Mathematical)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("g.xlim", "Range of x-asis", value = 5, min = 1, max = 20, step = 0.5)),
column(3, numericInput("g.ylim", "Range of y-asis", value = 0.5, min = 0, max = 1.5, step = 0.1)),
column(3, numericInput("g.pr", "Area left to the line", value = 0.5, min = 0, max = 1, step = 0.01))),
fluidRow(
column(5, sliderInput("g.shape", HTML("α, shape"), min = 0, max = 10, value =0.5, step = 0.1)),
column(5, sliderInput("g.scale", HTML("θ, scale"), min = 0, max = 10, value =1, step = 0.1))),
plotOutput("g.plot", click = "plot_click11", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("g.info"),
p(br()),
helpText("The position of x"),
tableOutput("g")),
wellPanel(
h4(tags$b("Gamma Distributed Sample (Simulation)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("g.bin", "Bin-width of histogram", value = 0.1, min = 0.01, max = 5, step = 0.1))),
fluidRow(
column(6, sliderInput("g.size", "Sample size", min = 0, max = 10000, value = 1000))),
plotOutput("g.plot2", click = "plot_click12", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("g.info2"),
p(br()),
helpText("Sample mean and standard deviation"),
tableOutput("g.sum")
#>tags$b("The first 100 simulated values"),
#>dataTableOutput("table5")
)
)
),
##---------- Panel 2 ---------
tabPanel("Derived from the Normal Distribution",
###---------- 2.1 ---------
titlePanel("Student's t-Distribution"),
tags$b("Parameter"),
tags$ul(
tags$li(HTML("v: degree of freedom, the greater v"))
),
tags$b("Note"),
tags$ul(
tags$li(HTML("When v is extremely great, t-distribution approximates to standard normal distribution"))),
splitLayout(
wellPanel(style = "background-color: #ffffff;",
h4(tags$b("Student's t-Distribution (Mathematical)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("t.xlim", "Range of x-asis", value = 5, min = 1, max = 10, step = 0.5)),
column(3, numericInput("t.ylim", "Range of y-asis", value = 0.5, min = 0.1, max = 1, step = 0.1)),
column(3, numericInput("t.pr", "Area left to the line", value = 0.025, min = 0, max = 1, step = 0.01))),
sliderInput("t.df", HTML("Degree of freedom (v):"), min = 0.01, max = 50, value =4, width ="50%"),
plotOutput("t.plot", click = "plot_click3", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("t.info"),
p(br()),
helpText("The position of x (The blue curve is standard normal distribution)"),
tableOutput("t")),
wellPanel(
h4(tags$b("Student's t Distributed Sample (Simulation)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("t.bin", "Binwidth of histogram", value = 0.1, min = 0.01, max = 5, step = 0.1))),
fluidRow(
column(6, sliderInput("t.size", "Sample size", min = 0, max = 10000, value = 1000))),
plotOutput("t.plot2", click = "plot_click4", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("t.info2"),
p(br()),
helpText("Sample mean and standard deviation"),
tableOutput("t.sum")
#>tags$b("The first 100 simulated values"),
#>dataTableOutput("table2")
)
),
###---------- 2.2 ---------
titlePanel("Chi-square Distribution"),
tags$b("Parameters"),
tags$ul(
tags$li(HTML("v: degree of freedom"))),
tags$b("Note"),
tags$ul(
tags$li(HTML("mean = v; variance = 2v"))),
splitLayout(
wellPanel(style = "background-color: #ffffff;",
h4(tags$b("Chi-square Distribution (Mathematical)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("x.xlim", "Range of x-asis", value = 5, min = 1, max = 10, step = 0.5)),
column(3, numericInput("x.ylim", "Range of y-asis", value = 0.75, min = 0.1, max = 1, step = 0.1)),
column(3, numericInput("x.pr", "Area left to the line", value = 0.5, min = 0, max = 1, step = 0.01))),
fluidRow(
column(6, sliderInput("x.df", HTML("Degree of freedom (v):"), min = 0, max = 10, value =1))),
plotOutput("x.plot", click = "plot_click5", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("x.info"),
p(br()),
helpText("The position of x"),
tableOutput("xn")),
wellPanel(
h4(tags$b("Chi-square Distributed Sample (Simulation)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("x.bin", "Binwidth of histogram", value = 0.1, min = 0.01, max = 5, step = 0.1))),
fluidRow(
column(6, sliderInput("x.size", "Sample size", min = 0, max = 10000, value = 1000))),
plotOutput("x.plot2", click = "plot_click6", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("x.info2"),
p(br()),
helpText("Sample mean and standard deviation"),
tableOutput("x.sum")
#>tags$b("The first 100 simulated values"),
#>dataTableOutput("table3")
)
),
###---------- 2.3 ---------
titlePanel("F Distribution"),
tags$b("Parameters"),
tags$ul(
tags$li(HTML("u: the first degree of freedom")),
tags$li(HTML("v: the second degree of freedom"))),
splitLayout(
wellPanel(style = "background-color: #ffffff;",
h4(tags$b("F Distribution (Mathematical)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("f.xlim", "Range of x-asis", value = 5, min = 1, max = 10, step = 0.5)),
column(3, numericInput("f.ylim", "Range of y-asis", value = 2.5, min = 0.1, max = 3, step = 0.1)),
column(3, numericInput("f.pr", "Area left to the line", value = 0.5, min = 0, max = 1, step = 0.01))),
fluidRow(
column(5, sliderInput("df11", HTML("The first degree of freedom (u):"), min = 0, max = 200, value =100)),
column(5, sliderInput("df21", HTML("The second degree of freedom (v):"), min =0, max = 200, value =100))),
plotOutput("f.plot", click = "plot_click7", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("f.info"),
p(br()),
helpText("The position of x"),
tableOutput("f")),
wellPanel(
h4(tags$b("F Distributed Sample (Simulation)")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("f.bin", "Binwidth of histogram", value = 0.1, min = 0.01, max = 5, step = 0.1))),
fluidRow(
column(6, sliderInput("f.size", "Sample size", min = 0, max = 10000, value = 1000))),
plotOutput("f.plot2", click = "plot_click8", width = "400px", height = "300px"),
hr(),
verbatimTextOutput("f.info2"),
p(br()),
helpText("Sample mean and standard deviation"),
tableOutput("f.sum")
#>tags$b("The first 100 simulated values"),
#>dataTableOutput("table4")
)
)
),
##---------- Panel 3 ---------
tabPanel("Discrete Random Variable",
titlePanel("Binomial Distribution, Poisson Distribution"),
tags$b("Notes"),
tags$ul(
tags$li("The blue curve shows the normal approximation"),
tags$li("Binomial distribution has mean = np and var = npq"),
tags$li("Poisson distribution has mean = var = parameter")
),
splitLayout(
###---------- 3.1 ---------
wellPanel(style = "background-color: #ffffff;",
h4(tags$b("Binomial Distribution")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("m", "The number of trials", value = 10, min = 1 , max = 1000)),
column(3, numericInput("p", "The probability of success", value = 0.5, min = 0, max = 1, step = 0.1)),
column(3, numericInput("xlim.b", "Range of x-asis", value = 20, min = 1, max = 100)),
column(3, numericInput("k", "The number of success (x0)", value = 0, min = 0, max = 1000))),
hr(),
plotOutput("b.plot", width = "400px", height = "400px"),
helpText("The probability of X=x0 is"),
tableOutput("b.k")
#>dataTableOutput("bino")
),
###---------- 3.2 ---------
wellPanel(style = "background-color: #ffffff;",
h4(tags$b("Poisson Distribution")),
hr(),
tags$b("Configuration"),
fluidRow(
column(3, numericInput("k2", "The number of meet", value = 10, min = 0, max = 1000)),
column(3, numericInput("lad", "Parameter", value = 5, min = 0, max = 1000)),
column(3, numericInput("x0", "X = x0", value = 0, min = 0, max = 1000)),
column(3, numericInput("xlim2", "Range of x-asis", value = 20, min = 1, max = 100))),
hr(),
plotOutput("p.plot", width = "400px", height = "400px"),
helpText("The probability of X=x0 is"),
tableOutput("p.k")
#>dataTableOutput("poi")
)
)
)
##---------- other panels ----------
#source("../0tabs/home.R",local=TRUE, encoding="UTF-8")$value,
#source("../0tabs/stop.R",local=TRUE, encoding="UTF-8")$value
#stop()
))
####################
####################
server <- function(input, output) {
#options(warn=-1)
##---------- 1. Continuous RV ----------
###---------- 1.1 Normal Distribution ----------
output$norm.plot <- renderPlot({
mynorm = function (x) {
norm = dnorm(x, input$mu, input$sigma)
norm[x<=(input$mu-input$n*input$sigma) |x>=(input$mu+input$n*input$sigma)] = NA
return(norm)
}
ggplot(data = data.frame(x = c(-(input$xlim), input$xlim)), aes(x)) +
stat_function(fun = dnorm, n = 101, args = list(mean = input$mu, sd = input$sigma)) + scale_y_continuous(breaks = NULL) +
stat_function(fun = mynorm, geom = "area", fill="cornflowerblue", alpha = 0.3) + scale_x_continuous(breaks = c(-input$xlim, input$xlim))+
ylab("Density") + theme_bw() + ylim(0, input$ylim) +
geom_vline(aes(xintercept=input$mu), color="red", linetype="dashed", size=0.5) +
geom_vline(aes(xintercept=qnorm(input$pr, mean = input$mu, sd = input$sigma, lower.tail = TRUE, log.p = FALSE)), color="red", size=0.5) })
output$info = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click))})
output$xs = renderTable({
a = qnorm(input$pr, mean = input$mu, sd = input$sigma, lower.tail = TRUE, log.p = FALSE)
b = 100*pnorm(input$mu+input$n*input$sigma, input$mu, input$sigma)-pnorm(input$mu-input$n*input$sigma, input$mu, input$sigma)
data.frame(x.position = a, blue.area = b)}, digits = 4)
N = reactive({ # prepare dataset
#set.seed(1)
df = data.frame(x = rnorm(input$size, input$mu, input$sigma))
return(df)})
output$table1 = renderDataTable({head(N(), n = 100L)}, options = list(pageLength = 10))
output$norm.plot2 = renderPlot(
{df = N()
ggplot(df, aes(x = x)) + theme_bw() + ylab("Frequency")+ geom_histogram(binwidth = input$bin, colour = "white", fill = "cornflowerblue", size = 0.1) +
xlim(-input$xlim, input$xlim) + geom_vline(aes(xintercept=quantile(x, probs = input$pr, na.rm = FALSE)), color="red", size=0.5)})
output$sum = renderTable({
x = N()
data.frame(Mean = mean(x[,1]), SD = sd(x[,1]), Variance = var(x[,1]), x.position = quantile(x[,1], probs = input$pr))
}, digits = 4)
output$info2 = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click2))})
###---------- 1.2 t Distribution ----------
output$t.plot <- renderPlot({
ggplot(data = data.frame(x = c(-input$t.xlim, input$t.xlim)), aes(x)) +
stat_function(fun = dt, n = 100, args = list(df = input$t.df)) +
stat_function(fun = dnorm, args = list(mean = 0, sd = 1), color = "cornflowerblue") +
ylab("Density") + scale_y_continuous(breaks = NULL) + theme_minimal() + ylim(0, input$t.ylim) +
theme_bw() + geom_vline(aes(xintercept=qt(input$t.pr, df = input$t.df)), colour = "red")})
output$t.info = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click3))})
output$t = renderTable({
data.frame(x.position = qt(input$t.pr, df = input$t.df))
}, digits = 4)
T = reactive({ # prepare dataset
#set.seed(1)
df = data.frame(x = rt(input$t.size, input$t.df))
return(df)})
output$table2 = renderDataTable({head(T(), n = 100L)}, options = list(pageLength = 10))
output$t.plot2 = renderPlot(
{df = T()
ggplot(df, aes(x = x)) + theme_bw() + ylab("Frequency")+ geom_histogram(binwidth = input$t.bin, colour = "white", fill = "cornflowerblue", size = 0.1) +
xlim(-input$t.xlim, input$t.xlim) + geom_vline(aes(xintercept=quantile(x, probs = input$t.pr, na.rm = FALSE)), color="red", size=0.5)})
output$t.info2 = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click4))})
output$t.sum = renderTable({
x = T()
data.frame(Mean = mean(x[,1]), SD = sd(x[,1]), Variance = var(x[,1]))}, digits = 4)
###---------- 1.3 X Distribution ----------
output$x.plot <- renderPlot({
ggplot(data = data.frame(x = c(-0.1, input$x.xlim)), aes(x)) +
stat_function(fun = dchisq, n = 100, args = list(df = input$x.df)) + ylab("Density") +
scale_y_continuous(breaks = NULL) + theme_minimal() + ggtitle("") + ylim(0, input$x.ylim) +
geom_vline(aes(xintercept=qchisq(input$x.pr, df = input$x.df)), colour = "red")})
output$x.info = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click5))})
output$xn = renderTable({
data.frame(x.postion = qchisq(input$x.pr, df = input$x.df))
}, digits = 4)
X = reactive({ # prepare dataset
#set.seed(1)
df = data.frame(x = rchisq(input$x.size, input$x.df))
return(df)})
output$table3 = renderDataTable({head(X(), n = 100L)}, options = list(pageLength = 10))
output$x.plot2 = renderPlot(
{df = X()
ggplot(df, aes(x = x)) + theme_bw() + ylab("Frequency")+ geom_histogram(binwidth = input$x.bin, colour = "white", fill = "cornflowerblue", size = 0.1) +
xlim(-0.1, input$x.xlim) + geom_vline(aes(xintercept=quantile(x, probs = input$x.pr, na.rm = FALSE)), color="red", size=0.5)})
output$x.info2 = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click6))})
output$x.sum = renderTable({
x = X()
data.frame(Mean = mean(x[,1]), SD = sd(x[,1]), Variance = var(x[,1]))
}, digits = 4)
##---------- 2. Derived from normal distribution ----------
###---------- 2.1 F Distribution ----------
output$f.plot <- renderPlot({
ggplot(data = data.frame(x = c(-0.1, input$f.xlim)), aes(x)) +
stat_function(fun = "df", n= 100, args = list(df1 = input$df11, df2 = input$df21)) + ylab("Density") +
scale_y_continuous(breaks = NULL) + theme_minimal() + ggtitle("") + ylim(0, input$f.ylim) +
geom_vline(aes(xintercept=qf(input$f.pr, df1 = input$df11, df2 = input$df21)), colour = "red")})
output$f.info = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click7))})
output$f = renderTable({
data.frame(x.postion = qf(input$f.pr, df1 = input$df11, df2 = input$df21))
}, digits = 4)
F = reactive({ # prepare dataset
#set.seed(1)
df = data.frame(x = rf(input$f.size, input$df11, input$df21))
return(df)})
output$table4 = renderDataTable({head(F(), n = 100L)}, options = list(pageLength = 10))
output$f.plot2 = renderPlot(
{df = F()
ggplot(df, aes(x = x)) + theme_bw() + ylab("Frequency")+ geom_histogram(binwidth = input$f.bin, colour = "white", fill = "cornflowerblue", size = 0.1) +
xlim(-0.1, input$f.xlim) + geom_vline(aes(xintercept=quantile(x, probs = input$f.pr, na.rm = FALSE)), color="red", size=0.5)})
output$f.info2 = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click8))})
output$f.sum = renderTable({
x = F()
data.frame(Mean = mean(x[,1]), SD = sd(x[,1]), Variance = var(x[,1]))
}, digits = 4)
###---------- 2.2. exp Distribution ----------
output$e.plot <- renderPlot({
ggplot(data = data.frame(x = c(-0.1, input$e.xlim)), aes(x)) +
stat_function(fun = "dexp", args = list(rate = input$r)) + ylab("Density") +
scale_y_continuous(breaks = NULL) + theme_minimal() + ggtitle("") + ylim(0, input$e.ylim) +
geom_vline(aes(xintercept=qexp(input$e.pr, rate = input$r)), colour = "red")})
output$e.info = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click9))})
output$e = renderTable({
data.frame(x.postion = qexp(input$e.pr, rate = input$r))
}, digits = 4)
E = reactive({ # prepare dataset
#set.seed(1)
df = data.frame(x = rexp(input$e.size, rate = input$r))
return(df)})
output$table5 = renderDataTable({head(E(), n = 100L)}, options = list(pageLength = 10))
output$e.plot2 = renderPlot(
{df = E()
ggplot(df, aes(x = x)) + theme_bw() + ylab("Frequency")+ geom_histogram(binwidth = input$e.bin, colour = "white", fill = "cornflowerblue", size = 0.1) +
xlim(-0.1, input$e.xlim) + geom_vline(aes(xintercept=quantile(x, probs = input$e.pr, na.rm = FALSE)), color="red", size=0.5)})
output$e.info2 = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click10))})
output$e.sum = renderTable({
x = E()
data.frame(Mean = mean(x[,1]), SD = sd(x[,1]), Variance = var(x[,1]))
}, digits = 4)
###---------- 2.3 Gamma distribution ----------
output$g.plot <- renderPlot({
ggplot(data = data.frame(x = c(-0.1, input$g.xlim)), aes(x)) +
stat_function(fun = "dgamma", args = list(shape = input$g.shape, scale=input$g.scale)) + ylab("Density") +
scale_y_continuous(breaks = NULL) + theme_minimal() + ggtitle("") + ylim(0, input$g.ylim) +
geom_vline(aes(xintercept=qgamma(input$g.pr, shape = input$g.shape, scale=input$g.scale)), colour = "red")})
output$g.info = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click11))})
output$g = renderTable({
data.frame(x.postion = qgamma(input$g.pr, shape = input$g.shape, scale=input$g.scale))
}, digits = 4)
G = reactive({ # prepare dataset
#set.seed(1)
df = data.frame(x = rgamma(input$g.size, shape = input$g.shape, scale=input$g.scale))
return(df)})
output$g.plot2 = renderPlot(
{df = G()
ggplot(df, aes(x = x)) + theme_bw() + ylab("Frequency")+ geom_histogram(binwidth = input$g.bin, colour = "white", fill = "cornflowerblue", size = 0.1) +
xlim(-0.1, input$g.xlim) + geom_vline(aes(xintercept=quantile(x, probs = input$g.pr, na.rm = FALSE)), color="red", size=0.5)})
output$g.info2 = renderText({
xy_str = function(e) {
if(is.null(e)) return("NULL\n")
paste0(" x = ", round(e$x, 6), "\n", " y = ", round(e$y, 6))
}
paste0("Position: ", "\n", xy_str(input$plot_click12))})
output$g.sum = renderTable({
x = G()
data.frame(Mean = mean(x[,1]), SD = sd(x[,1]), Variance = var(x[,1]))
}, digits = 4)
##---------- 3. Discrete RV ----------
###----------3.1 Binomial Distribution ----------
B = reactive({
x1 = pbinom(0:(input$m-1), input$m, input$p)
x2 = pbinom(1:input$m, input$m, input$p)
x = x2-x1
data = data.frame(x0 = c(0:length(x)), Pr.x0 = round(c(0, x), 6), Pr.x0.lower = round(c(0, x2), 6))
return(data)
})
output$b.plot <- renderPlot({
X = B()
ggplot(X, aes(X[,"x0"], X[,"Pr.x0"])) + geom_step() +
geom_point(aes(x = X$x0[input$k+1], y = X$Pr.x0[input$k+1]),color = "red", size = 2.5) +
stat_function(fun = dnorm, args = list(mean = input$m*input$p, sd = sqrt(input$m*input$p*(1-input$p))), color = "cornflowerblue") + scale_y_continuous(breaks = NULL) +
xlim(-0.1, input$xlim.b) + xlab("") + ylab("PMF") + theme_minimal() + ggtitle("")
})
output$bino = renderDataTable({head(B(), n = 150L)}, options = list(pageLength = 10))
output$b.k = renderTable({B()[(input$k+1),]})
###---------- 3.2 Poisson Distribution ----------
P = reactive({
x1 = ppois(0:(input$k2-1), input$lad)
x2 = ppois(1:input$k2, input$lad)
x = x2-x1
data = data.frame(x0 = c(0:length(x)), Pr.x0 = round(c(0, x), 6), Pr.x0.lower = round(c(0, x2), 6))
return(data)
})
output$p.plot <- renderPlot({
X = P()
ggplot(X, aes(X[,"x0"],X[,"Pr.x0"])) + geom_step() +
geom_point(aes(x = X$x0[input$x0+1], y = X$Pr.x0[input$x0+1]),color = "red", size = 2.5) +
stat_function(fun = dnorm, args = list(mean = input$lad, sd = sqrt(input$lad)), color = "cornflowerblue") + scale_y_continuous(breaks = NULL) +
xlab("") + ylab("PMF") + theme_minimal() + ggtitle("") + xlim(-0.1, input$xlim2) })
output$poi = renderDataTable({head(P(), n = 150L)}, options = list(pageLength = 10))
output$p.k = renderTable({P()[(input$x0+1),]})
}
####################
app <- shinyApp(ui = ui, server = server)
runApp(app, quiet = TRUE)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.