tests/testthat/test-expectedRank.R

# Test expected rank

#Using 2 of sample models from test_merExtract.R

set.seed(51315)
library(lme4)

###############################################
# Testing expected rank----
###############################################
test_that("expectedRank parameters work and dont work as intended", {
  skip_on_cran()
  #########################################

  # Sleepstudy
  m1  <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)

  m2 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)

  # Wackier example
  data(Orthodont,package = "nlme")
  Orthodont$nsex <- as.numeric(Orthodont$Sex == "Male")
  Orthodont$nsexage <- with(Orthodont, nsex*age)
  m3 <- lmer(distance ~ age + (0 + age + nsex|Subject), data=Orthodont)

  # two grouping factors
  data(grouseticks)
  grouseticks$HEIGHT <- scale(grouseticks$HEIGHT)
  grouseticks <- merge(grouseticks, grouseticks_agg[, 1:3], by = "BROOD")

  form <- TICKS ~ YEAR + HEIGHT +(HEIGHT|BROOD) + (1|INDEX)
  m4  <- glmer(form, family="poisson",data=grouseticks,
               control = glmerControl(optimizer="Nelder_Mead",
                                      optCtrl=list(maxfun = 1e5)))

  form <- TICKS ~ YEAR + HEIGHT + (0 + HEIGHT|BROOD) + (1|INDEX)
  m5  <- glmer(form, family="poisson",data=grouseticks,
               control = glmerControl(optimizer="Nelder_Mead",
                                      optCtrl=list(maxfun = 1e5)))

  #Custom Expectation Functions
  expect_correct_dim <- function(merMod, groupFctr=NULL, term=NULL) {
    if (is.null(groupFctr)) {
      n.levels <- nrow(ranef(merMod)[[1]])
    } else {
      n.levels <- nrow(ranef(merMod)[[groupFctr]])
    }
    ER <- expectedRank(merMod, groupFctr, term)
    testthat::expect_true(nrow(ER) == n.levels &
                            ncol(ER) == 7 &
                            all(colnames(ER)[6:7] == c("ER", "pctER")) &
                            class(ER) == "data.frame")
  }


  ##################################


  expect_correct_dim(m1)
  expect_correct_dim(m1, groupFctr="Subject")
  expect_correct_dim(m1, term="(Intercept)")
  expect_correct_dim(m1, groupFctr="Subject", term="(Intercept)")

  expect_correct_dim(m2, term="(Intercept)")
  expect_correct_dim(m2, term="Days")

  expect_correct_dim(m3, groupFctr="Subject", term="age")
  expect_correct_dim(m3, groupFctr="Subject", term="nsex")

  expect_correct_dim(m4, groupFctr="BROOD", term="(Intercept)")
  expect_correct_dim(m4, groupFctr="INDEX", term="(Intercept)")

  expect_correct_dim(m5, groupFctr="BROOD")
  expect_correct_dim(m5, groupFctr="INDEX")

  # expect_error(expectedRank(m4), "Must specify which grouping factor when there are more than one")
  # expect_error(expectedRank(m4, groupFctr="BROOD"), "Must specify which random coefficient when there are more than one per selected grouping factor")
  # expect_error(expectedRank(m3, groupFctr="Subject"), "Must specify which random coefficient when there are more than one per selected grouping factor")
  # expect_error(expectedRank(m3, term="int"), "undefined columns selected")
})

test_that("Ranks have the correct range", {
  skip_on_cran()
  # Sleepstudy
  m1  <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)


  numGrps <- nrow(ranef(m1)[[1]])
  expect_true(max(expectedRank(m1)$ER) <= numGrps)
  expect_true(min(expectedRank(m1)$ER) >= 1)
  expect_equal(cor(expectedRank(m1)$ER, rank(ranef(m1)[[1]])), 0.99, tolerance = .01)
})

test_that("Percentile ranks have the correct range", {
  m1  <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
   expect_true(max(expectedRank(m1)$pctER) <= 100)
   expect_true(min(expectedRank(m1)$pctER) >= 0)
})

Try the merTools package in your browser

Any scripts or data that you put into this service are public.

merTools documentation built on May 29, 2024, 7:05 a.m.