Nothing
#' Read NetCDF files.
#'
#' Using the \code{\link[ncdf4]{ncdf4-package}} package, it reads a NetCDF file. The advantage
#' over using \code{\link[ncdf4]{ncvar_get}} is that the output is a tidy data.table
#' with proper dimensions.
#'
#' @param file source to read from. Must be one of:
#' * A string representing a local file with read access.
#' * A string representing a URL readable by [ncdf4::nc_open()].
#' (this includes DAP urls).
#' * A netcdf object returned by [ncdf4::nc_open()].
#' @param vars one of:
#' * `NULL`: reads all variables.
#' * a character vector with the name of the variables to read.
#' * a function that takes a vector with all the variables and returns either
#' a character vector with the name of variables to read or a numeric/logical
#' vector that indicates a subset of variables.
#' @param out character indicating the type of output desired
#' @param subset a list of subsetting objects. See below.
#' @param key if `TRUE`, returns a data.table keyed by the dimensions of the data.
#' @param ... in [GlanceNetCDF()], ignored. Is there for convenience so that a call to [ReadNetCDF()] can
#' be also valid for [GlanceNetCDF()].
#'
#' @section Subsetting:
#' In the most basic form, `subset` will be a named list whose names must match
#' the dimensions specified in the NetCDF file and each element must be a vector
#' whose range defines
#' a contiguous subset of data. You don't need to provide and exact range that
#' matches the actual gridpoints of the file; the closest gridpoint will be selected.
#' Furthermore, you can use `NA` to refer to the existing minimum or maximum.
#'
#' So, if you want to get Southern Hemisphere data from the from a file that defines
#' latitude as `lat`, then you can use:
#' \preformatted{
#' subset = list(lat = -90:0)
#'}
#' More complex subsetting operations are supported. If you want to read non-contiguous
#' chunks of data, you can specify each chunk into a list inside `subset`. For example
#' this subset
#' \preformatted{
#' subset = list(list(lat = -90:-70, lon = 0:60),
#' list(lat = 70:90, lon = 300:360))
#'}
#' will return two contiguous chunks: one on the South-West corner and one on the
#' North-East corner. Alternatively, if you want to get the four corners that
#' are combination of those two conditions,
#'
#' \preformatted{
#' subset = list(lat = list(-90:-70, 70:90),
#' lon = list(0:60, 300:360))
#'}
#' Both operations can be mixed together. So for example this
#'
#' \preformatted{
#' subset = list(list(lat = -90:-70,
#' lon = 0:60),
#' time = list(c("2000-01-01", "2000-12-31"),
#' c("2010-01-01", "2010-12-31")))
#'}
#'
#' returns one spatial chunk for each of two temporal chunks.
#'
#' The general idea is that named elements define 'global' subsets ranges that will be
#' applied to every other subset, while each unnamed element define one contiguous chunk.
#' In the above example, `time` defines two temporal ranges that every subset of data will
#' have.
#'
#' The above example, then, is equivalent to
#'
#' \preformatted{
#' subset = list(list(lat = -90:-70,
#' lon = 0:60,
#' time = c("2000-01-01", "2000-12-31")),
#' list(lat = -90:-70,
#' lon = 0:60,
#' time = c("2010-01-01", "2010-12-31")))
#'}
#'
#' but demands much less typing.
#'
#' @return
#' The return format is specified by `out`. It can be a data table in which each
#' column is a variable and each row, an observation; an array with named
#' dimensions; or a vector. Since it's possible to return multiple arrays or
#' vectors (one for each variable), for consistency the return type is always a
#' list. Either of these two options are much faster than the
#' first since the most time consuming part is the melting of the array
#' returned by [ncdf4::ncvar_get]. `out = "vector"` is particularly useful for
#' adding new variables to an existing data frame with the same dimensions.
#'
#' When not all variables specified in `vars` have the same number of dimensions,
#' the shorter variables will be recycled. E.g. if reading a 3D pressure field
#' and a 2D surface temperature field, the latter will be turned into a 3D field
#' with the same values in each missing dimension.
#'
#' `GlanceNetCDF()` returns a list of variables and dimensions included in the
#' file with a nice printing method.
#'
#' @examples
#' file <- system.file("extdata", "temperature.nc", package = "metR")
#' # Get a list of variables.
#' variables <- GlanceNetCDF(file)
#' print(variables)
#'
#' # The object returned by GlanceNetCDF is a list with lots
#' # of information
#' str(variables)
#'
#' # Read only the first one, with name "var".
#' field <- ReadNetCDF(file, vars = c(var = names(variables$vars[1])))
#' # Add a new variable.
#' # ¡Make sure it's on the same exact grid!
#' field[, var2 := ReadNetCDF(file, out = "vector")]
#'
#' \dontrun{
#' # Using a DAP url
#' url <- "http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/.GMAO/.GEOS_V2p1/.hindcast/.ua/dods"
#' field <- ReadNetCDF(url, subset = list(M = 1,
#' P = 10,
#' S = "1999-01-01"))
#'
#' # In this case, opening the netcdf file takes a non-neglible
#' # amount of time. So if you want to iterate over many dimensions,
#' # then it's more efficient to open the file first and then read it.
#'
#' ncfile <- ncdf4::nc_open(url)
#' field <- ReadNetCDF(ncfile, subset = list(M = 1,
#' P = 10,
#' S = "1999-01-01"))
#'
#'
#' # Using a function in `vars` to read all variables that
#' # start with "radar_".
#' ReadNetCDF(radar_file, vars = \(x) startsWith(x, "radar_"))
#'
#' }
#' @export
ReadNetCDF <- function(file, vars = NULL,
out = c("data.frame", "vector", "array"),
subset = NULL, key = FALSE) {
check_packages(c("ncdf4", "PCICt"), "ReadNetCDF")
out <- out[1]
checks <- makeAssertCollection()
if (!inherits(file, "ncdf4")) {
assertCharacter(file, len = 1, min.chars = 1, any.missing = FALSE, add = checks)
}
# assertCharacter(vars, null.ok = TRUE, any.missing = FALSE, unique = TRUE,
# add = checks)
assertChoice(out, c("data.frame", "vector", "array", "vars"), add = checks)
assertList(subset, types = c("vector", "POSIXct", "POSIXt", "Date", "list"), null.ok = TRUE, add = checks)
# assertNamed(subset, c("unique"), add = checks)
assertFlag(key, add = checks)
reportAssertions(checks)
if (!inherits(file, "ncdf4")) {
utils::capture.output(ncfile <- try(ncdf4::nc_open(file), silent = TRUE))
if (inherits(ncfile, "try-error")) {
ncfile <- strsplit(ncfile, "\n", fixed = TRUE)[[1]][2]
stop(ncfile)
}
on.exit({
ncdf4::nc_close(ncfile)
})
} else {
ncfile <- file
}
if (out[1] == "vars") {
r <- list(vars = ncfile$var,
dims = ncfile$dim)
class(r) <- c("nc_glance", class(r))
return(r)
}
all_vars <- names(ncfile$var)
if (is.null(vars)) {
vars <- as.list(all_vars)
} else if (is.function(vars)) {
vars_result <- vars(all_vars)
if (!is.character(vars_result)) {
vars <- all_vars[vars_result]
} else {
vars <- vars_result
}
}
empty_vars <- length(vars) == 0
if (empty_vars) {
warningf("No variables selected. Returning NULL")
return(NULL)
}
not_valid <- !(vars %in% all_vars)
if (any(not_valid)) {
bad_vars <- paste0(vars[not_valid], collapse = ", ")
stopf("Invalid variables selected. Bad variables: %s.", bad_vars)
}
# Vars must be a (fully) named vector.
varnames <- names(vars)
if (is.null(varnames)) {
names(vars) <- vars
} else {
no.names <- nchar(varnames) == 0
names(vars)[no.names] <- vars[no.names]
}
# Leo las dimensiones.
dims <- names(ncfile$dim)
# dims <- dims[dims != "nbnds"]
ids <- vector()
dimensions <- list()
for (i in seq_along(dims)) {
# if (dims[i] == "time" && ncfile$dim[[dims[i]]]$units != "") {
dimensions[[dims[i]]] <- .parse_time(ncfile$dim[[dims[i]]]$vals,
ncfile$dim[[dims[i]]]$units,
ncfile$dim[[dims[i]]]$calendar)
# } else {
# dimensions[[dims[i]]] <- ncfile$dim[[dims[i]]]$vals
# }
ids[i] <- ncfile$dim[[i]]$id
}
names(dims) <- ids
## Hago los subsets
# Me fijo si faltan dimensiones
subset <- .expand_chunks(subset)
subset_names <- .names_recursive(subset)
subset.extra <- subset_names[!(subset_names %in% names(dimensions))]
if (length(subset.extra) != 0) {
stopf("Subsetting dimensions not found: %s.",
paste0(subset.extra, collapse = ", "))
}
if (length(subset) > 1) {
if (out != "data.frame") {
stopf('Multiple subsets only supported for `out = "data.frame"')
}
reads <- lapply(subset, function(this_subset) {
ReadNetCDF(file = file, vars = vars, out = out, key = key, subset = this_subset)
})
return(data.table::rbindlist(reads))
} else {
subset <- subset[[1]]
}
# Leo las variables y las meto en una lista.
nc <- list()
nc_dim <- list()
dim.length <- vector("numeric", length = length(vars))
for (v in seq_along(vars)) {
# Para cada variable, veo start y count
order <- ncfile$var[[vars[[v]]]]$dimids
start <- rep(1, length(order))
names(start) <- names(dimensions[dims[as.character(order)]])
count <- rep(-1, length(order))
names(count) <- names(dimensions[dims[as.character(order)]])
sub.dimensions <- dimensions
for (s in names(subset)[names(subset) %in% names(start)]) {
d <- dimensions[[s]]
sub <- subset[[s]]
if (.is.somedate(d)) {
sub <- lubridate::as_datetime(sub)
}
if (is.na(sub[1])) {
sub[1] <- min(d)
}
if (is.na(sub[2])) {
sub[2] <- max(d)
}
start1 <- which(d %~% sub[1])
end <- which(d %~% sub[length(sub)])
start[[s]] <- min(start1, end)
count[[s]] <- abs(end - start1) + 1
if(count[[s]] == 0) count[[s]] <- 1
sub.dimensions[[s]] <- dimensions[[s]][seq.int(start[[s]], start[[s]] + count[[s]] - 1)]
}
if (all(is.na(order))) {
start <- NA
count <- NA
s <- 1
}
var1 <- .read_vars(varid = vars[[v]], ncfile = ncfile, start = start, count = count)
if (!all(is.na(order))) {
# Even with collapse_degen = FALSE, deegenerate dimensions are still an issue
correct_dims <- sub.dimensions[dims[as.character(order)]]
var1 <- array(var1, dim = lengths(correct_dims))
dimnames(var1) <- correct_dims
attr(var1, "dimvalues") <- correct_dims
nc_dim[[v]] <- as.vector(correct_dims)
} else {
nc_dim[[v]] <- 0
}
dim.length[v] <- length(order)
nc[[v]] <- var1
}
if (out[1] == "array") {
return(nc)
} else if (out[1] == "vector") {
nc <- lapply(seq_along(nc), function(x) c(nc[[x]]))
names(nc) <- names(vars)
return(nc)
} else {
first.var <- which.max(dim.length)
nc.df <- .melt_array(nc[[first.var]], dims = nc_dim[[first.var]],
value.name = names(vars)[first.var])
for (v in seq_along(vars)[-first.var]) {
this.dim <- names(dimnames(nc[[v]]))
first.dim <- names(dimnames(nc[[first.var]]))
missing.dim <- first.dim[!(first.dim %in% this.dim)]
n <- c(nc[[v]])
nc.df[, names(vars)[v] := ..n, by = c(missing.dim)]
}
if (key == TRUE) data.table::setkeyv(nc.df, names(nc.df)[!(names(nc.df) %in% names(vars))])
}
return(nc.df[][])
}
time_units_factor <- c("days" = 24*3600,
"hours" = 3600,
"minutes" = 60,
"seconds" = 1,
"milliseconds" = 1/1000)
.parse_time <- function(time, units, calendar = NULL) {
calendar <- tolower(calendar)
has_since <- grepl("since", units)
if (!has_since) {
return(time)
}
# For all I know this could fail to actually get the origin.
# Is there a more elegant way of extracting the origin?
origin <- trimws(strsplit(units, "since")[[1]][2])
time_unit <- trimws(strsplit(units, "since")[[1]])[1]
if (!(time_unit %in% names(time_units_factor))) {
warning(sprintf(gettext("time unit has unrecognised units: %s. Not parsing", domain = "R-metR"), time_unit))
return(time)
}
if (length(calendar) != 0) {
time <- as.POSIXct(PCICt::as.PCICt(time*time_units_factor[time_unit], cal = calendar, origin = origin),
cal = "standard", tz = "UTC", origin = origin)
} else {
time <- as.POSIXct(origin, tz = "UTC") + time*time_units_factor[time_unit]
}
return(time)
}
.read_vars <- function(varid, ncfile, start, count) {
var <- ncdf4::ncvar_get(nc = ncfile, varid = varid, collapse_degen = FALSE, start = start,
count = count)
var
}
.expand_chunks <- function(subset) {
if (is.null(subset)) {
return(list(NULL))
}
# Make everything a list
subset <- lapply(subset, function(l) {
if (!is.list(l)) {
list(l)
} else {
l
}
})
if (is.null(names(subset))) {
names(subset) <- rep("", length(subset))
}
# If it has name, is a global subset,
# otherwhise, is a chunck definition
has_name <- names(subset) != ""
new_subset <- subset[has_name]
if (sum(!has_name) != 0) new_subset["chunks"] <- list(subset[!has_name])
chunks <- suppressWarnings(purrr::cross(new_subset)) # cross is deprecated
new_subset <- lapply(chunks, function(chunk) {
is.chunk <- which(names(chunk) == "chunks")
if (length(is.chunk) != 0) {
c(chunk[-is.chunk], chunk[[is.chunk]])
} else {
chunk
}
})
to_range <- function(x) {
if (is.list(x)) {
lapply(x, to_range)
} else {
if (length(x) != 2) {
range(x)
} else {
x
}
}
}
new_subset <- lapply(new_subset, to_range)
new_subset
}
.names_recursive <- function(x) {
out <- names(x)
if (is.list(x)) {
out <- c(out, unlist(lapply(x, .names_recursive)))
}
unique(out[out != ""])
}
#' @rdname ReadNetCDF
#'
#' @export
GlanceNetCDF <- function(file, ...) {
ReadNetCDF(file, out = "vars")
}
#' @export
print.nc_glance <- function(x, ...) {
cat(gettext("----- Variables ----- \n", domain = "R-metR"))
out <- lapply(x$vars, print)
cat("\n\n")
cat(gettext("----- Dimensions ----- \n", domain = "R-metR"))
out <- lapply(x$dim, print)
}
#' @export
print.ncvar4 <- function(x, ...) {
cat(x$name, ":\n", sep = "")
cat(" ", x$longname, sep = "")
if (x$units != "") cat(" in ", x$units, sep = "")
cat("\n")
dims <- vapply(x$dim, function(x) x$name, "a")
cat(gettext(" Dimensions: ", domain = "R-metR"))
cat(paste0(dims, collapse = gettext(" by ", domain = "R-metR")), sep = "")
cat("\n")
if (x$hasScaleFact) {
cat(gettext(" (Scaled)", domain = "R-metR"))
cat("\n")
}
return(invisible(x))
}
#' @export
print.ncdim4 <- function(x, ...) {
# cat("$", dim$name, "\n", sep = "")
units <- x$units
vals <- suppressMessages(suppressWarnings(.parse_time(x$vals, x$units, x$calendar)))
if (.is.somedate(vals)) {
units <- ""
}
catf(" %s: %d values from %s to %s %s\n",
x$name, x$len, as.character(min(vals)), as.character(max(vals)), units)
return(invisible(x))
}
.melt_array <- function(array, dims, value.name = "V1") {
if (!is.array(array)) {
return(array)
}
# dims <- lapply(dims, c)
dims <- c(dims[length(dims):1], sorted = FALSE)
grid <- do.call(data.table::CJ, dims)
grid[, c(value.name) := c(array)][]
return(grid)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.