R/ReadNetCDF.R

Defines functions .melt_array print.ncdim4 print.ncvar4 print.nc_glance GlanceNetCDF .names_recursive .expand_chunks .read_vars .parse_time ReadNetCDF

Documented in GlanceNetCDF ReadNetCDF

#' Read NetCDF files.
#'
#' Using the \code{\link[ncdf4]{ncdf4-package}} package, it reads a NetCDF file. The advantage
#' over using \code{\link[ncdf4]{ncvar_get}} is that the output is a tidy data.table
#' with proper dimensions.
#'
#' @param file source to read from. Must be one of:
#'    * A string representing a local file with read access.
#'    * A string representing a URL readable by [ncdf4::nc_open()].
#'      (this includes DAP urls).
#'    * A netcdf object returned by [ncdf4::nc_open()].
#' @param vars one of:
#'    * `NULL`: reads all variables.
#'    * a character vector with the name of the variables to read.
#'    * a function that takes a vector with all the variables and returns either
#'    a character vector with the name of variables to read or a numeric/logical
#'    vector that indicates a subset of variables.
#' @param out character indicating the type of output desired
#' @param subset a list of subsetting objects. See below.
#' @param key if `TRUE`, returns a data.table keyed by the dimensions of the data.
#' @param ... in [GlanceNetCDF()], ignored. Is there for convenience so that a call to [ReadNetCDF()] can
#' be also valid for [GlanceNetCDF()].
#'
#' @section Subsetting:
#' In the most basic form, `subset` will be a named list whose names must match
#' the dimensions specified in the NetCDF file and each element must be a vector
#' whose range defines
#' a contiguous subset of data. You don't need to provide and exact range that
#' matches the actual gridpoints of the file; the closest gridpoint will be selected.
#' Furthermore, you can use `NA` to refer to the existing minimum or maximum.
#'
#' So, if you want to get Southern Hemisphere data from the from a file that defines
#' latitude as `lat`, then you can use:
#' \preformatted{
#' subset = list(lat = -90:0)
#'}
#' More complex subsetting operations are supported. If you want to read non-contiguous
#' chunks of data, you can specify each chunk into a list inside `subset`. For example
#' this subset
#' \preformatted{
#' subset = list(list(lat = -90:-70, lon = 0:60),
#'               list(lat = 70:90, lon = 300:360))
#'}
#' will return two contiguous chunks: one on the South-West corner and one on the
#' North-East corner. Alternatively, if you want to get the four corners that
#' are combination of those two conditions,
#'
#' \preformatted{
#' subset = list(lat = list(-90:-70, 70:90),
#'               lon = list(0:60, 300:360))
#'}
#' Both operations can be mixed together. So for example this
#'
#' \preformatted{
#' subset = list(list(lat = -90:-70,
#'                    lon = 0:60),
#'               time = list(c("2000-01-01", "2000-12-31"),
#'                           c("2010-01-01", "2010-12-31")))
#'}
#'
#' returns one spatial chunk for each of two temporal chunks.
#'
#' The general idea is that named elements define 'global' subsets ranges that will be
#' applied to every other subset, while each unnamed element define one contiguous chunk.
#' In the above example, `time` defines two temporal ranges that every subset of data will
#' have.
#'
#' The above example, then, is equivalent to
#'
#' \preformatted{
#' subset = list(list(lat = -90:-70,
#'                    lon = 0:60,
#'                    time = c("2000-01-01", "2000-12-31")),
#'               list(lat = -90:-70,
#'                    lon = 0:60,
#'                    time = c("2010-01-01", "2010-12-31")))
#'}
#'
#' but demands much less typing.
#'
#' @return
#' The return format is specified by `out`. It can be a data table in which each
#' column is a variable and each row, an observation; an array with named
#' dimensions; or a vector. Since it's possible to return multiple arrays or
#' vectors (one for each variable), for consistency the return type is always a
#' list. Either of these two options are much faster than the
#' first since the most time consuming part is the melting of the array
#' returned by [ncdf4::ncvar_get]. `out = "vector"` is particularly useful for
#' adding new variables to an existing data frame with the same dimensions.
#'
#' When not all variables specified in `vars` have the same number of dimensions,
#' the shorter variables will be recycled. E.g. if reading a 3D pressure field
#' and a 2D surface temperature field, the latter will be turned into a 3D field
#' with the same values in each missing dimension.
#'
#' `GlanceNetCDF()` returns a list of variables and dimensions included in the
#' file with a nice printing method.
#'
#' @examples
#' file <- system.file("extdata", "temperature.nc", package = "metR")
#' # Get a list of variables.
#' variables <- GlanceNetCDF(file)
#' print(variables)
#'
#' # The object returned by GlanceNetCDF is a list with lots
#' # of information
#' str(variables)
#'
#' # Read only the first one, with name "var".
#' field <- ReadNetCDF(file, vars = c(var = names(variables$vars[1])))
#' # Add a new variable.
#' # ¡Make sure it's on the same exact grid!
#' field[, var2 := ReadNetCDF(file, out = "vector")]
#'
#' \dontrun{
#' # Using a DAP url
#' url <- "http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/.GMAO/.GEOS_V2p1/.hindcast/.ua/dods"
#' field <- ReadNetCDF(url, subset = list(M = 1,
#'                                        P = 10,
#'                                        S = "1999-01-01"))
#'
#' # In this case, opening the netcdf file takes a non-neglible
#' # amount of time. So if you want to iterate over many dimensions,
#' # then it's more efficient to open the file first and then read it.
#'
#' ncfile <- ncdf4::nc_open(url)
#' field <- ReadNetCDF(ncfile, subset = list(M = 1,
#'                                        P = 10,
#'                                        S = "1999-01-01"))
#'
#'
#' # Using a function in `vars` to read all variables that
#' # start with "radar_".
#' ReadNetCDF(radar_file, vars = \(x) startsWith(x, "radar_"))
#'
#' }
#' @export
ReadNetCDF <- function(file, vars = NULL,
                       out = c("data.frame", "vector", "array"),
                       subset = NULL, key = FALSE) {
    check_packages(c("ncdf4", "PCICt"), "ReadNetCDF")

    out <- out[1]
    checks <- makeAssertCollection()

    if (!inherits(file, "ncdf4")) {
        assertCharacter(file, len = 1, min.chars = 1, any.missing = FALSE, add = checks)
    }

    # assertCharacter(vars, null.ok = TRUE, any.missing = FALSE, unique = TRUE,
    #                 add = checks)
    assertChoice(out, c("data.frame", "vector", "array", "vars"), add = checks)
    assertList(subset, types = c("vector", "POSIXct", "POSIXt", "Date", "list"), null.ok = TRUE, add = checks)
    # assertNamed(subset, c("unique"), add = checks)
    assertFlag(key, add = checks)

    reportAssertions(checks)

    if (!inherits(file, "ncdf4")) {
        utils::capture.output(ncfile <- try(ncdf4::nc_open(file), silent = TRUE))
        if (inherits(ncfile, "try-error")) {
            ncfile <- strsplit(ncfile, "\n", fixed = TRUE)[[1]][2]
            stop(ncfile)
        }
        on.exit({
            ncdf4::nc_close(ncfile)
        })
    } else {
       ncfile <- file
    }


    if (out[1] == "vars") {
        r <- list(vars = ncfile$var,
                  dims = ncfile$dim)
        class(r) <- c("nc_glance", class(r))
        return(r)
    }

    all_vars <- names(ncfile$var)

    if (is.null(vars)) {
        vars <- as.list(all_vars)
    } else if (is.function(vars)) {

        vars_result <- vars(all_vars)

        if (!is.character(vars_result)) {
            vars <- all_vars[vars_result]
        } else {
            vars <- vars_result
        }
    }

    empty_vars <- length(vars) == 0
    if (empty_vars) {
        warningf("No variables selected. Returning NULL")
        return(NULL)
    }

    not_valid <- !(vars %in% all_vars)

    if (any(not_valid)) {
        bad_vars <- paste0(vars[not_valid], collapse = ", ")
        stopf("Invalid variables selected. Bad variables: %s.", bad_vars)
    }

    # Vars must be a (fully) named vector.
    varnames <- names(vars)
    if (is.null(varnames)) {
        names(vars) <- vars
    } else {
        no.names <- nchar(varnames) == 0
        names(vars)[no.names] <- vars[no.names]
    }


    # Leo las dimensiones.
    dims <- names(ncfile$dim)
    # dims <- dims[dims != "nbnds"]
    ids <- vector()
    dimensions <- list()
    for (i in seq_along(dims)) {
        # if (dims[i] == "time" && ncfile$dim[[dims[i]]]$units != "") {
            dimensions[[dims[i]]] <- .parse_time(ncfile$dim[[dims[i]]]$vals,
                                                 ncfile$dim[[dims[i]]]$units,
                                                 ncfile$dim[[dims[i]]]$calendar)
        # } else {
        #     dimensions[[dims[i]]] <- ncfile$dim[[dims[i]]]$vals
        # }
        ids[i] <- ncfile$dim[[i]]$id
    }
    names(dims) <- ids

    ## Hago los subsets
    # Me fijo si faltan dimensiones
    subset <- .expand_chunks(subset)

    subset_names <- .names_recursive(subset)
    subset.extra <- subset_names[!(subset_names %in% names(dimensions))]
    if (length(subset.extra) != 0) {
        stopf("Subsetting dimensions not found: %s.",
                    paste0(subset.extra, collapse = ", "))
    }

    if (length(subset) > 1) {
        if (out != "data.frame") {
            stopf('Multiple subsets only supported for `out = "data.frame"')
        }
        reads <- lapply(subset, function(this_subset) {
            ReadNetCDF(file = file, vars = vars, out = out, key = key, subset = this_subset)
        })
        return(data.table::rbindlist(reads))
    } else {
        subset <- subset[[1]]
    }

    # Leo las variables y las meto en una lista.
    nc <- list()
    nc_dim <- list()

    dim.length <- vector("numeric", length = length(vars))

    for (v in seq_along(vars)) {
        # Para cada variable, veo start y count
        order <- ncfile$var[[vars[[v]]]]$dimids
        start <- rep(1, length(order))
        names(start) <- names(dimensions[dims[as.character(order)]])
        count <- rep(-1, length(order))
        names(count) <- names(dimensions[dims[as.character(order)]])

        sub.dimensions <- dimensions

        for (s in names(subset)[names(subset) %in% names(start)]) {
            d <- dimensions[[s]]
            sub <- subset[[s]]

            if (.is.somedate(d)) {
                sub <- lubridate::as_datetime(sub)
            }

            if (is.na(sub[1])) {
                sub[1] <- min(d)
            }

            if (is.na(sub[2])) {
                sub[2] <- max(d)
            }

            start1 <- which(d %~% sub[1])
            end <- which(d %~% sub[length(sub)])
            start[[s]] <- min(start1, end)
            count[[s]] <- abs(end - start1) + 1


            if(count[[s]] == 0) count[[s]] <- 1

            sub.dimensions[[s]] <- dimensions[[s]][seq.int(start[[s]], start[[s]] + count[[s]] - 1)]
        }

        if (all(is.na(order))) {
            start <- NA
            count <- NA
            s <- 1
        }
        var1 <- .read_vars(varid = vars[[v]], ncfile = ncfile, start = start, count = count)

        if (!all(is.na(order))) {
            # Even with collapse_degen = FALSE, deegenerate dimensions are still an issue
            correct_dims <- sub.dimensions[dims[as.character(order)]]
            var1 <- array(var1, dim = lengths(correct_dims))

            dimnames(var1) <- correct_dims
            attr(var1, "dimvalues") <- correct_dims
            nc_dim[[v]] <- as.vector(correct_dims)
        } else {
            nc_dim[[v]] <- 0
        }

        dim.length[v] <- length(order)
        nc[[v]] <- var1

    }

    if (out[1] == "array") {
        return(nc)
    } else if (out[1] == "vector") {
        nc <- lapply(seq_along(nc), function(x) c(nc[[x]]))
        names(nc) <- names(vars)
        return(nc)
    } else {
        first.var <- which.max(dim.length)
        nc.df <- .melt_array(nc[[first.var]], dims = nc_dim[[first.var]],
                             value.name = names(vars)[first.var])

        for (v in seq_along(vars)[-first.var]) {
            this.dim <- names(dimnames(nc[[v]]))
            first.dim <- names(dimnames(nc[[first.var]]))
            missing.dim <- first.dim[!(first.dim %in% this.dim)]
            n <- c(nc[[v]])
            nc.df[, names(vars)[v] := ..n, by = c(missing.dim)]
        }

        if (key == TRUE) data.table::setkeyv(nc.df, names(nc.df)[!(names(nc.df) %in% names(vars))])
    }


    return(nc.df[][])
}



time_units_factor <- c("days" = 24*3600,
                       "hours" = 3600,
                       "minutes" = 60,
                       "seconds" = 1,
                       "milliseconds" = 1/1000)


.parse_time <- function(time, units, calendar = NULL) {
    calendar <- tolower(calendar)
    has_since <- grepl("since", units)
    if (!has_since) {
        return(time)
    }
    # For all I know this could fail to actually get the origin.
    # Is there a more elegant way of extracting the origin?
    origin <- trimws(strsplit(units, "since")[[1]][2])
    time_unit <- trimws(strsplit(units, "since")[[1]])[1]

    if (!(time_unit %in% names(time_units_factor))) {
        warning(sprintf(gettext("time unit has unrecognised units: %s. Not parsing", domain = "R-metR"), time_unit))
        return(time)
    }


    if (length(calendar) != 0) {
        time <- as.POSIXct(PCICt::as.PCICt(time*time_units_factor[time_unit], cal = calendar, origin = origin),
                           cal = "standard", tz = "UTC", origin = origin)
    } else {
        time <- as.POSIXct(origin, tz = "UTC") + time*time_units_factor[time_unit]
    }

    return(time)
}

.read_vars <- function(varid, ncfile, start, count) {

    var <- ncdf4::ncvar_get(nc = ncfile, varid = varid, collapse_degen = FALSE, start = start,
                             count = count)
    var
}

.expand_chunks <- function(subset) {
    if (is.null(subset)) {
        return(list(NULL))
    }
    # Make everything a list
    subset <- lapply(subset, function(l) {
        if (!is.list(l)) {
            list(l)
        } else {
            l
        }
    })

    if (is.null(names(subset))) {
        names(subset) <- rep("", length(subset))
    }
    # If it has name, is a global subset,
    # otherwhise, is a chunck definition
    has_name <- names(subset) != ""

    new_subset <- subset[has_name]
    if (sum(!has_name) != 0) new_subset["chunks"] <- list(subset[!has_name])

    chunks <- suppressWarnings(purrr::cross(new_subset))  # cross is deprecated
    new_subset <- lapply(chunks, function(chunk) {
        is.chunk <- which(names(chunk) == "chunks")
        if (length(is.chunk) != 0) {
            c(chunk[-is.chunk], chunk[[is.chunk]])
        } else {
            chunk
        }
    })

    to_range <- function(x) {
        if (is.list(x)) {
            lapply(x, to_range)
        } else {
            if (length(x) != 2) {
                range(x)
            } else {
                x
            }
        }
    }

    new_subset <- lapply(new_subset, to_range)
    new_subset
}


.names_recursive <- function(x) {
    out <- names(x)
    if (is.list(x)) {
        out <- c(out, unlist(lapply(x, .names_recursive)))
    }
    unique(out[out != ""])
}

#' @rdname ReadNetCDF
#'
#' @export
GlanceNetCDF <- function(file, ...) {
    ReadNetCDF(file, out = "vars")
}

#' @export
print.nc_glance <- function(x, ...) {
    cat(gettext("----- Variables ----- \n", domain = "R-metR"))
    out <- lapply(x$vars, print)

    cat("\n\n")
    cat(gettext("----- Dimensions ----- \n", domain = "R-metR"))
    out <- lapply(x$dim, print)
}

#' @export
print.ncvar4 <- function(x, ...) {
    cat(x$name, ":\n", sep = "")
    cat("    ", x$longname, sep = "")

    if (x$units != "") cat(" in ", x$units, sep = "")

    cat("\n")
    dims <- vapply(x$dim, function(x) x$name, "a")

    cat(gettext("    Dimensions: ", domain = "R-metR"))
    cat(paste0(dims, collapse = gettext(" by ", domain = "R-metR")), sep = "")
    cat("\n")

    if (x$hasScaleFact) {
        cat(gettext("    (Scaled)", domain = "R-metR"))
        cat("\n")
    }

    return(invisible(x))
}

#' @export
print.ncdim4 <- function(x, ...) {
    # cat("$", dim$name, "\n", sep = "")
    units <- x$units
    vals <- suppressMessages(suppressWarnings(.parse_time(x$vals, x$units, x$calendar)))

    if (.is.somedate(vals)) {
        units <- ""
    }

    catf("  %s: %d values from %s to %s %s\n",
         x$name, x$len, as.character(min(vals)), as.character(max(vals)), units)
    return(invisible(x))
}



.melt_array <- function(array, dims, value.name = "V1") {
    if (!is.array(array)) {
        return(array)
    }

    # dims <- lapply(dims, c)
    dims <- c(dims[length(dims):1], sorted = FALSE)
    grid <- do.call(data.table::CJ, dims)
    grid[, c(value.name) := c(array)][]

    return(grid)
}

Try the metR package in your browser

Any scripts or data that you put into this service are public.

metR documentation built on Oct. 14, 2024, 5:09 p.m.