Nothing
# this provides a modified version of the profile function from the bbmle package
# to fix bugs and increase functionality
# it is hoped to eventually roll these changes into bbmle
## FIXME: abstract to general-purpose code? (i.e. replace 'fitted' by
# objective function, parameter vector, optimizer, method, control settings,
## min val, standard error/Hessian, ...
##
## allow starting values to be set by "mle" (always use mle), "prevfit"
## (default?), and "extrap" (linear extrapolation from previous two fits)
##
setMethod("profile", "mymle",
function (fitted, which = 1:p, maxsteps = 100,
alpha = 0.01, zmax = sqrt(qchisq(1 - alpha/2, p)),
del = zmax/5, trace = FALSE, skiperrs=TRUE,
std.err, tol.newmin = 0.001, debug=FALSE,
prof.lower, prof.upper, skip.hessian=TRUE,
try_harder=FALSE, start.method, ...) {
## fitted: mle2 object
## which: which parameters to profile (numeric or char)
## maxsteps: steps to take looking for zmax
## alpha: max alpha level
## zmax: max log-likelihood difference to search to
## del: stepsize
## trace:
## skiperrs:
if (missing(start.method)) start.method <- "prevfit"
if (fitted@optimizer=="optimx") {
fitted@call$method <- fitted@details$method.used
}
if (fitted@optimizer=="constrOptim")
stop("profiling not yet working for constrOptim -- sorry")
Pnames <- names(fitted@coef)
p <- length(Pnames)
if (is.character(which)) which <- match(which,Pnames)
if (any(is.na(which)))
stop("parameters not found in model coefficients")
## global flag for better fit found inside profile fit
newpars_found <- FALSE
if (debug) cat("i","bi","B0[i]","sgn","step","del","std.err[i]","\n")
onestep <- function(step,bi) {
if (missing(bi)) {
bi <- B0[i] + sgn * step * del * std.err[i]
if (debug) cat(i,bi,B0[i],sgn,step,del,std.err[i],"\n")
} else if (debug) cat(bi,"\n")
fix <- list(bi)
names(fix) <- p.i
if (is.null(call$fixed)) call$fixed <- fix
else call$fixed <- c(eval(call$fixed),fix)
if (skiperrs) {
pfit <- try(eval.parent(call, 2L), silent=TRUE)
} else {
pfit <- eval.parent(call, 2L)
}
ok <- ! inherits(pfit,"try-error")
if (debug && ok) cat(coef(pfit),-logLik(pfit),"\n")
if(skiperrs && !ok) {
warning(paste("Error encountered in profile:",pfit))
return(NA)
}
else {
## pfit is current (profile) fit,
## fitted is original fit
## pfit@min _should_ be > fitted@min
## thus zz below should be >0
zz <- 2*(pfit@min - fitted@min)
ri <- pv0
ri[, names(pfit@coef)] <- pfit@coef
ri[, p.i] <- bi
##cat(2*pfit@min,2*fitted@min,zz,
## tol.newmin,zz<(-tol.newmin),"\n")
if (!is.na(zz) && zz<0) {
if (zz > (-tol.newmin)) {
z <- 0
## HACK for non-monotonic profiles? z <- -sgn*sqrt(abs(zz))
} else {
## cat() instead of warning(); FIXME use message() instead???
message("Profiling has found a better solution,",
"so original fit had not converged:\n")
message(sprintf("(new deviance=%1.4g, old deviance=%1.4g, diff=%1.4g)",
2*pfit@min,2*fitted@min,2*(pfit@min-fitted@min)),"\n")
message("Returning better fit ...\n")
## need to return parameters all the way up
## to top level
newpars_found <<- TRUE
## return(pfit@fullcoef)
return(pfit) ## return full fit
}
} else {
z <- sgn * sqrt(zz)
}
pvi <<- rbind(pvi, ri)
zi <<- c(zi, z) ## nb GLOBAL set
}
if (trace) cat(bi, z, "\n")
if ((step>=1) & (start.method=="prevfit")) call$start <<- as.list(pfit@coef)
z
} ## end onestep
## Profile the likelihood around its maximum
## Based on profile.glm in MASS
summ <- summary(fitted)
if (missing(std.err)) {
std.err <- summ@coef[, "Std. Error"]
} else {
n <- dim(summ@coef)[1]
if (length(std.err)!=n) stop("length standard errors not equal to coefficients length")
# not certain what this was supposed to do - better to stop
# if (length(std.err)<n)
# std.err <- rep(std.err,length.out=length(summ@coef))
# if (any(is.na(std.err)))
# std.err[is.na(std.err)] <- summ@coef[is.na(std.err)]
}
if (any(is.na(std.err))) {
std.err[is.na(std.err)] <- sqrt(1/diag(fitted@details$hessian))[is.na(std.err)]
if (any(is.na(std.err))) { ## still bad
stop("Hessian is ill-behaved or missing, ",
"can't find an initial estimate of std. error ",
"(consider specifying std.err in profile call)")
}
## warn anyway ...
warning("Non-positive-definite Hessian, ",
"attempting initial std err estimate from diagonals")
}
Pnames <- names(B0 <- fitted@coef)
pv0 <- t(as.matrix(B0))
p <- length(Pnames)
prof <- vector("list", length = length(which))
names(prof) <- Pnames[which]
call <- fitted@call
call$skip.hessian <- skip.hessian ## BMB: experimental
call$minuslogl <- fitted@minuslogl
ndeps <- eval.parent(call$control$ndeps)
parscale <- eval.parent(call$control$parscale)
nc <- length(fitted@coef)
xf <- function(x) if (is.null(x)) NULL else rep(x,length.out=nc) ## expand to length
upper <- xf(unlist(eval.parent(call$upper)))
lower <- xf(unlist(eval.parent(call$lower)))
if (all(upper==Inf & lower==-Inf)) {
lower <- upper <- NULL
## kluge: lower/upper may have been set to +/- Inf
## in previous rounds,
## but we don't want them in that case
}
if (!missing(prof.lower)) prof.lower <- xf(prof.lower)
if (!missing(prof.upper)) prof.upper <- xf(prof.upper)
stop_msg <- list()
for (i in which) {
zi <- 0
pvi <- pv0
p.i <- Pnames[i]
wfun <- function(txt) paste(txt," (",p.i,")",sep="")
## omit values from control vectors:
## is this necessary/correct?
stop_msg[[i]] <- list(down="",up="")
for (sgn in c(-1, 1)) {
dir_ind <- (sgn+1)/2+1 ## (-1,1) -> (1,2)
if (trace) {
cat("\nParameter:", p.i, c("down", "up")[dir_ind], "\n")
cat("par val","sqrt(dev diff)\n")
}
step <- 0
z <- 0
## This logic was a bit frail in some cases with
## high parameter curvature. We should probably at least
## do something about cases where the mle2 call fails
## because the parameter gets stepped outside the domain.
## (We now have.)
call$start <- as.list(B0)
lastz <- 0
valf <- function(b) {
(!is.null(b) && length(b)>1) ||
(length(b)==1 && i==1 && is.finite(b))
}
lbound <- if (!missing(prof.lower)) {
prof.lower[i]
} else if (valf(lower))
{ lower[i]
} else -Inf
ubound <- if (!missing(prof.upper)) prof.upper[i] else if (valf(upper)) upper[i] else Inf
stop_bound <- stop_na <- stop_cutoff <- stop_flat <- FALSE
while ((step <- step + 1) < maxsteps &&
## added is.na() test for try_harder case
## FIXME: add unit test!
(is.na(z) || abs(z) < zmax)) {
curval <- B0[i] + sgn * step * del * std.err[i]
if ((sgn==-1 & curval<lbound) ||
(sgn==1 && curval>ubound)) {
stop_bound <- TRUE;
stop_msg[[i]][[dir_ind]] <- paste(stop_msg[[i]][[dir_ind]],wfun("hit bound"))
break
}
z <- onestep(step)
## stop on flat spot, unless try_harder
if (step>1 && (identical(oldcurval,curval) || identical(oldz,z))) {
stop_flat <- TRUE
stop_msg[[i]][[dir_ind]] <- paste(stop_msg[[i]][[dir_ind]],wfun("hit flat spot"),
sep=";")
if (!try_harder) break
}
oldcurval <- curval
oldz <- z
if (newpars_found) return(z)
if(is.na(z)) {
stop_na <- TRUE
stop_msg[[i]][[dir_ind]] <- paste(stop_msg[[i]][[dir_ind]],wfun("hit NA"),sep=";")
if (!try_harder) break
}
lastz <- z
if (newpars_found) return(z)
}
stop_cutoff <- (!is.na(z) && abs(z)>=zmax)
stop_maxstep <- (step==maxsteps)
if (stop_maxstep) stop_msg[[i]][[dir_ind]] <- paste(stop_msg[[i]][[dir_ind]],wfun("max steps"),sep=";")
if (debug) {
if (stop_na) message(wfun("encountered NA"),"\n")
if (stop_cutoff) message(wfun("above cutoff"),"\n")
}
if (stop_flat) {
warning(wfun("stepsize effectively zero/flat profile"))
} else {
if (stop_maxstep) warning(wfun("hit maximum number of steps"))
if(!stop_cutoff) {
if (debug) cat(wfun("haven't got to zmax yet, trying harder"),"\n")
stop_msg[[i]][[dir_ind]] <- paste(stop_msg[[i]][[dir_ind]],wfun("past cutoff"),sep=";")
## now let's try a bit harder if we came up short
for(dstep in c(0.2, 0.4, 0.6, 0.8, 0.9)) {
curval <- B0[i] + sgn * (step-1+dstep) * del * std.err[i]
if ((sgn==-1 & curval<lbound) ||
(sgn==1 && curval>ubound)) break
z <- onestep(step - 1 + dstep)
if (newpars_found) return(z)
if(is.na(z) || abs(z) > zmax) break
lastz <- z
if (newpars_found) return(z)
}
if (!stop_cutoff && stop_bound) {
if (debug) cat(wfun("bounded and didn't make it, try at boundary"),"\n")
## bounded and didn't make it, try at boundary
if (sgn==-1 && B0[i]>lbound) z <- onestep(bi=lbound)
if (sgn==1 && B0[i]<ubound) z <- onestep(bi=ubound)
if (newpars_found) return(z)
}
} else if (length(zi) < 5) { # try smaller steps
if (debug) cat(wfun("try smaller steps"),"\n")
stop_msg[[i]][[dir_ind]] <- paste(stop_msg[[i]][[dir_ind]],wfun("took more steps"),sep=";")
mxstep <- step - 1
step <- 0.5
while ((step <- step + 1) < mxstep) {
z <- onestep(step)
}
} ## smaller steps
} ## !zero stepsize
} ## step in both directions
si <- order(pvi[, i])
prof[[p.i]] <- data.frame(z = zi[si])
prof[[p.i]]$par.vals <- pvi[si,, drop=FALSE]
} ## for i in which
newprof <- new("profile.mymle", profile = prof, summary = summ)
attr(newprof,"stop_msg") <- stop_msg
newprof
})
# setMethod("plot", signature(x="profile.mymle", y="missing"),
# function (x, levels, which=1:p, conf = c(99, 95, 90, 80, 50)/100,
# plot.confstr = TRUE, confstr = NULL, absVal = TRUE, add = FALSE,
# col.minval="green", lty.minval=2,
# col.conf="magenta", lty.conf=2,
# col.prof="blue", lty.prof=1,
# xlabs=nm, ylab="z",
# onepage=TRUE,
# ask=((prod(par("mfcol")) < length(which)) && dev.interactive() &&
# !onepage),
# show.points=FALSE,
# main, xlim, ylim, ...)
# {
# ## Plot profiled likelihood
# ## Based on profile.nls (package stats)
# obj <- x@profile
# nm <- names(obj)
# p <- length(nm)
# ## need to save these for i>1 below
# no.xlim <- missing(xlim)
# no.ylim <- missing(ylim)
# if (is.character(which)) which <- match(which,nm)
# ask_orig <- par(ask=ask)
# op <- list(ask=ask_orig)
# if (onepage) {
# nplots <- length(which)
# ## Q: should we reset par(mfrow), or par(mfg), anyway?
# if (prod(par("mfcol")) < nplots) {
# rows <- ceiling(round(sqrt(nplots)))
# columns <- ceiling(nplots/rows)
# mfrow_orig <- par(mfrow=c(rows,columns))
# op <- c(op,mfrow_orig)
# }
# }
# on.exit(par(op))
# confstr <- NULL
# if (missing(levels)) {
# levels <- sqrt(qchisq(pmax(0, pmin(1, conf)), 1))
# confstr <- paste(format(100 * conf), "%", sep = "")
# }
# if (any(levels <= 0)) {
# levels <- levels[levels > 0]
# warning("levels truncated to positive values only")
# }
# if (is.null(confstr)) {
# confstr <- paste(format(100 * pchisq(levels^2, 1)), "%", sep = "")
# }
# mlev <- max(levels) * 1.05
# ## opar <- par(mar = c(5, 4, 1, 1) + 0.1)
# if (!missing(xlabs) && length(which)<length(nm)) {
# xl2 = nm
# xl2[which] <- xlabs
# xlabs <- xl2
# }
# if (missing(main))
# main <- paste("Likelihood profile:",nm)
# main <- rep(main,length=length(nm))
# for (i in seq(along.with = nm)[which]) {
# ## <FIXME> This does not need to be monotonic
# ## cat("**",i,obj[[i]]$par.vals[,i],obj[[i]]$z,"\n")
# ## FIXME: reconcile this with confint!
# yvals <- obj[[i]]$par.vals[,nm[i],drop=FALSE]
# avals <- data.frame(x=unname(yvals), y=obj[[i]]$z)
# if (!all(diff(obj[[i]]$z)>0)) {
# warning("non-monotonic profile: reverting to linear interpolation. Consider setting std.err manually")
# predback <- approxfun(obj[[i]]$z,yvals)
# } else {
# sp <- splines::interpSpline(yvals, obj[[i]]$z,
# na.action=na.omit)
# avals <- rbind(avals,as.data.frame(predict(sp)))
# avals <- avals[order(avals$x),]
# bsp <- try(splines::backSpline(sp),silent=TRUE)
# bsp.OK <- (class(bsp)[1]!="try-error")
# if (bsp.OK) {
# predback <- function(y) { predict(bsp,y)$y }
# } else { ## backspline failed
# warning("backspline failed: using uniroot(), confidence limits may be unreliable")
# ## what do we do?
# ## attempt to use uniroot
# predback <- function(y) {
# pfun0 <- function(z1) {
# t1 <- try(uniroot(function(z) {
# predict(sp,z)$y-z1
# }, range(obj[[i]]$par.vals[,nm[i]])),silent=TRUE)
# if (class(t1)[1]=="try-error") NA else t1$root
# }
# sapply(y,pfun0)
# }
# }
# }
# ## </FIXME>
# if (no.xlim) xlim <- predback(c(-mlev, mlev))
# xvals <- obj[[i]]$par.vals[,nm[i]]
# if (is.na(xlim[1]))
# xlim[1] <- min(xvals)
# if (is.na(xlim[2]))
# xlim[2] <- max(xvals)
# if (absVal) {
# if (!add) {
# if (no.ylim) ylim <- c(0,mlev)
# plot(abs(obj[[i]]$z) ~ xvals,
# xlab = xlabs[i],
# ylab = if (missing(ylab)) expression(abs(z)) else ylab,
# xlim = xlim, ylim = ylim,
# type = "n", main=main[i], ...)
# }
# avals$y <- abs(avals$y)
# lines(avals, col = col.prof, lty=lty.prof)
# if (show.points) points(yvals,abs(obj[[i]]$z))
# } else { ## not absVal
# if (!add) {
# if (no.ylim) ylim <- c(-mlev,mlev)
# plot(obj[[i]]$z ~ xvals, xlab = xlabs[i],
# ylim = ylim, xlim = xlim,
# ylab = if (missing(ylab)) expression(z) else ylab,
# type = "n", main=main[i], ...)
# }
# lines(avals, col = col.prof, lty=lty.prof)
# if (show.points) points(yvals,obj[[i]]$z)
# }
# x0 <- predback(0)
# abline(v = x0, h=0, col = col.minval, lty = lty.minval)
# for (j in 1:length(levels)) {
# lev <- levels[j]
# confstr.lev <- confstr[j]
# ## Note: predict may return NA if we didn't profile
# ## far enough in either direction. That's OK for the
# ## "h" part of the plot, but the horizontal line made
# ## with "l" disappears.
# pred <- predback(c(-lev, lev))
# ## horizontal
# if (absVal) levs=rep(lev,2) else levs=c(-lev,lev)
# lines(pred, levs, type = "h", col = col.conf, lty = 2)
# ## vertical
# pred <- ifelse(is.na(pred), xlim, pred)
# if (absVal) {
# lines(pred, rep(lev, 2), type = "l", col = col.conf, lty = lty.conf)
# } else {
# lines(c(x0,pred[2]), rep(lev, 2), type = "l", col = col.conf, lty = lty.conf)
# lines(c(pred[1],x0), rep(-lev, 2), type = "l", col = col.conf, lty = lty.conf)
# }
# if (plot.confstr) {
# text(labels=confstr.lev,x=x0,y=lev,col=col.conf)
# }
# } ## loop over levels
# } ## loop over variables
# ## par(opar)
# })
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.