knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(mets)
Here are some key data-manipulation steps on a data-frame which is how we typically organize our data in R. After having read the data into R it will typically be a data-frame, if not we can force it to be a data-frame. The basic idea of the utility functions is to get a simple and easy to type way of making simple data-manipulation on a data-frame much like what is possible in SAS or STATA.
The functions, say, dcut, dfactor and so on are all functions that basically does what the base R cut, factor do, but are easier to use in the context of data-frames and have additional functionality.
library(mets) data(melanoma)
is.data.frame(melanoma)
Here we work on the melanoma data that is already read into R and is a data-frame.
The structure for all functions is
to use the function on y in a dataframe grouped by x if condition ifcond is valid. The basic functions are
Data processing * dsort * dreshape * dcut * drm, drename, ddrop, dkeep, dsubset * drelevel * dlag * dfactor, dnumeric
Data aggregation * dby, dby2 * dscalar, deval, daggregate * dmean, dsd, dsum, dquantile, dcor * dtable, dcount
Data summaries * dhead, dtail, * dsummary, * dprint, dlist, dlevels, dunique
A generic function daggregate, daggr, can be called with a function as the argument
without the grouping variable (x)
A useful feature is that y and x as well as the subset condition can be specified using regular-expressions or by wildcards (default). Here to illustrate this, we compute the means of certain variables.
First just oveall
dmean(melanoma,~thick+I(log(thick)))
now only when days>500
dmean(melanoma,~thick+I(log(thick))|I(days>500))
and now after sex but only when days>500
dmean(melanoma,thick+I(log(thick))~sex|I(days>500))
and finally after quartiles of days (via the dcut function)
dmean(melanoma,thick+I(log(thick))~I(dcut(days)))
or summary of all variables starting with "s" and that contains "a"
dmean(melanoma,"s*"+"*a*"~sex|I(days>500))
melanoma=drename(melanoma,tykkelse~thick) names(melanoma)
Deleting variables
data(melanoma) melanoma=drm(melanoma,~thick+sex) names(melanoma)
or sas style
data(melanoma) melanoma=ddrop(melanoma,~thick+sex) names(melanoma)
alternatively we can also keep certain variables
data(melanoma) melanoma=dkeep(melanoma,~thick+sex+status+days) names(melanoma)
This can also be done with direct asignment
data(melanoma) ddrop(melanoma) <- ~thick+sex names(melanoma)
The dkeep function can also be used to re-ordering the variables in the data-frame
data(melanoma) names(melanoma) melanoma=dkeep(melanoma,~days+status+.) names(melanoma)
data(melanoma) dstr(melanoma)
The data can in Rstudio be seen as a data-table but to list certain parts of the data in output window
dlist(melanoma)
dlist(melanoma, ~.|sex==1)
dlist(melanoma, ~ulc+days+thick+sex|sex==1)
Getting summaries
dsummary(melanoma)
or for specfic variables
dsummary(melanoma,~thick+status+sex)
Summaries in different groups (sex)
dsummary(melanoma,thick+days+status~sex)
and only among those with thin-tumours or only females (sex==1)
dsummary(melanoma,thick+days+status~sex|thick<97)
dsummary(melanoma,thick+status~+1|sex==1)
or
dsummary(melanoma,~thick+status|sex==1)
To make more complex conditions need to use the I()
dsummary(melanoma,thick+days+status~sex|I(thick<97 & sex==1))
Tables between variables
dtable(melanoma,~status+sex)
All bivariate tables
dtable(melanoma,~status+sex+ulc,level=2)
All univariate tables
dtable(melanoma,~status+sex+ulc,level=1)
and with new variables
dtable(melanoma,~status+sex+ulc+dcut(days)+I(days>300),level=1)
To sort the data
data(melanoma) mel= dsort(melanoma,~days) dsort(melanoma) <- ~days head(mel)
and to sort after multiple variables increasing and decreasing
dsort(melanoma) <- ~days-status head(melanoma)
To define a bunch of new covariates within a data-frame
data(melanoma) melanoma= transform(melanoma, thick2=thick^2, lthick=log(thick) ) dhead(melanoma)
When the above definitions are done using a condition this can be achieved using the dtransform function that extends transform with a possible condition
melanoma=dtransform(melanoma,ll=thick*1.05^ulc,sex==1) melanoma=dtransform(melanoma,ll=thick,sex!=1) dmean(melanoma,ll~sex+ulc)
On the melanoma data the variable thick gives the thickness of the melanom tumour. For some analyses we would like to make a factor depending on the thickness. This can be done in several different ways
melanoma=dcut(melanoma,~thick,breaks=c(0,200,500,800,2000))
New variable is named thickcat.0 by default.
To see levels of factors in data-frame
dlevels(melanoma)
Checking group sizes
dtable(melanoma,~thickcat.0)
With adding to the data-frame directly
dcut(melanoma,breaks=c(0,200,500,800,2000)) <- gr.thick1~thick dlevels(melanoma)
new variable is named thickcat.0 (after first cut-point), or to get quartiles with default names thick.cat.4
dcut(melanoma) <- ~ thick # new variable is thickcat.4 dlevels(melanoma)
or median groups, here starting again with the original data,
data(melanoma) dcut(melanoma,breaks=2) <- ~ thick # new variable is thick.2 dlevels(melanoma)
to control new names
data(melanoma) mela= dcut(melanoma,thickcat4+dayscat4~thick+days,breaks=4) dlevels(mela)
or
data(melanoma) dcut(melanoma,breaks=4) <- thickcat4+dayscat4~thick+days dlevels(melanoma)
This can also be typed out more specifically
melanoma$gthick = cut(melanoma$thick,breaks=c(0,200,500,800,2000)) melanoma$gthick = cut(melanoma$thick,breaks=quantile(melanoma$thick),include.lowest=TRUE)
To see levels of covariates in data-frame
data(melanoma) dcut(melanoma,breaks=4) <- thickcat4~thick dlevels(melanoma)
To relevel the factor
dtable(melanoma,~thickcat4) melanoma = drelevel(melanoma,~thickcat4,ref="(194,356]") dlevels(melanoma)
or to take the third level in the list of levels, same as above,
melanoma = drelevel(melanoma,~thickcat4,ref=2) dlevels(melanoma)
To combine levels of a factor (first combinining first 3 groups into one)
melanoma = drelevel(melanoma,~thickcat4,newlevels=1:3) dlevels(melanoma)
or to combine groups 1 and 2 into one group and 3 and 4 into another
dkeep(melanoma) <- ~thick+thickcat4 melanoma = drelevel(melanoma,gthick2~thickcat4,newlevels=list(1:2,3:4)) dlevels(melanoma)
Changing order of factor levels
dfactor(melanoma,levels=c(3,1,2,4)) <- thickcat4.2~thickcat4 dlevel(melanoma,~ "thickcat4*") dtable(melanoma,~thickcat4+thickcat4.2)
Combine levels but now control factor-level names
melanoma=drelevel(melanoma,gthick3~thickcat4,newlevels=list(group1.2=1:2,group3.4=3:4)) dlevels(melanoma)
A numeric variable "status" with values 1,2,3 into a factor by
data(melanoma) melanoma = dfactor(melanoma,~status, labels=c("malignant-melanoma","censoring","dead-other")) melanoma = dfactor(melanoma,sexl~sex,labels=c("females","males")) dtable(melanoma,~sexl+status.f)
A gender factor with values "M", "F" can be converted into numerics by
melanoma = dnumeric(melanoma,~sexl) dstr(melanoma,"sex*") dtable(melanoma,~'sex*',level=2)
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.