casewise | R Documentation |
.. content for description (no empty lines) ..
casewise(conc, marg, cause.marg)
conc |
Concordance |
marg |
Marginal estimate |
cause.marg |
specififes which cause that should be used for marginal cif based on prodlim |
Thomas Scheike
## Reduce Ex.Timings
library(prodlim)
data(prt);
prt <- force.same.cens(prt,cause="status")
### marginal cumulative incidence of prostate cancer##'
outm <- prodlim(Hist(time,status)~+1,data=prt)
times <- 60:100
cifmz <- predict(outm,cause=2,time=times,newdata=data.frame(zyg="MZ")) ## cause is 2 (second cause)
cifdz <- predict(outm,cause=2,time=times,newdata=data.frame(zyg="DZ"))
### concordance for MZ and DZ twins
cc <- bicomprisk(Event(time,status)~strata(zyg)+id(id),data=prt,cause=c(2,2),prodlim=TRUE)
cdz <- cc$model$"DZ"
cmz <- cc$model$"MZ"
cdz <- casewise(cdz,outm,cause.marg=2)
cmz <- casewise(cmz,outm,cause.marg=2)
plot(cmz,ci=NULL,ylim=c(0,0.5),xlim=c(60,100),legend=TRUE,col=c(3,2,1))
par(new=TRUE)
plot(cdz,ci=NULL,ylim=c(0,0.5),xlim=c(60,100),legend=TRUE)
summary(cdz)
summary(cmz)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.