bptwin | R Documentation |
Liability-threshold model for twin data
bptwin(
x,
data,
id,
zyg,
DZ,
group = NULL,
num = NULL,
weights = NULL,
weights.fun = function(x) ifelse(any(x <= 0), 0, max(x)),
strata = NULL,
messages = 1,
control = list(trace = 0),
type = "ace",
eqmean = TRUE,
pairs.only = FALSE,
samecens = TRUE,
allmarg = samecens & !is.null(weights),
stderr = TRUE,
robustvar = TRUE,
p,
indiv = FALSE,
constrain,
varlink,
...
)
x |
Formula specifying effects of covariates on the response. |
data |
|
id |
The name of the column in the dataset containing the twin-id variable. |
zyg |
The name of the column in the dataset containing the zygosity variable. |
DZ |
Character defining the level in the zyg variable corresponding to the dyzogitic twins. |
group |
Optional. Variable name defining group for interaction analysis (e.g., gender) |
num |
Optional twin number variable |
weights |
Weight matrix if needed by the chosen estimator (IPCW) |
weights.fun |
Function defining a single weight each individual/cluster |
strata |
Strata |
messages |
Control amount of messages shown |
control |
Control argument parsed on to the optimization routine. Starting values may be parsed as ' |
type |
Character defining the type of analysis to be performed. Should be a subset of "acde" (additive genetic factors, common environmental factors, dominant genetic factors, unique environmental factors). |
eqmean |
Equal means (with type="cor")? |
pairs.only |
Include complete pairs only? |
samecens |
Same censoring |
allmarg |
Should all marginal terms be included |
stderr |
Should standard errors be calculated? |
robustvar |
If TRUE robust (sandwich) variance estimates of the variance are used |
p |
Parameter vector p in which to evaluate log-Likelihood and score function |
indiv |
If TRUE the score and log-Likelihood contribution of each twin-pair |
constrain |
Development argument |
varlink |
Link function for variance parameters |
... |
Additional arguments to lower level functions |
Klaus K. Holst
twinlm
, twinlm.time
, twinlm.strata
, twinsim
data(twinstut)
b0 <- bptwin(stutter~sex,
data=droplevels(subset(twinstut,zyg%in%c("mz","dz"))),
id="tvparnr",zyg="zyg",DZ="dz",type="ae")
summary(b0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.