knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(mets)
Specify rate models of $N_1(t)$.
Under simple randomization we can estimate the rate Cox model
Under two-stage randomization we can estimate the rate Cox model
Starting point is that Cox's partial likelihood score can be used for estimating parameters \begin{align} U(\beta) & = \int (A(t) - e(t)) dN_1(t) \end{align} where $A(t)$ is the combined treatments over time.
The estimator can be agumented in different ways using additional covariates at the time of randomization and a censoring augmentation.
The solved estimating eqution is
\begin{align}
\sum_i U_i - AUG_0 - AUG_1 + AUG_C = 0
\end{align}
using the covariates from augmentR0 to augment with
\begin{align}
AUG_0 = ( A_0 - \pi_0(X_0) ) X_0 \gamma_0
\end{align}
where possibly $P(A_0=1|X_0)=\pi_0(X_0)$ but does not depend on covariates under randomization,
and furhter using the covariates from augmentR1, to augment with R indiciating that the
randomization takes place or not,
\begin{align}
AUG_1 = R ( A_1 - \pi_1(X_1)) X_1 \gamma_1
\end{align}
and the dynamic censoring augmenting
\begin{align}
AUG_C = \int_0^t \gamma_c(s)^T (e(s) - \bar e(s)) \frac{1}{G_c(s) } dM_c(s)
\end{align}
where $\gamma_c(s)$ is chosen to minimize the variance given the dynamic covariates specified by augmentC.
The propensity score models are always estimated unless it is requested to use some fixed number $\pi_0=1/2$ for example, but always better to be adaptive and estimate $\pi_0$. Also $\gamma_0$ and $\gamma_1$ are estimated to reduce variance of $U_i$.
Standard errors are estimated using the influence function of all estimators and tests of differences can therefore be computed subsequently.
The times of randomization is specified by
Data must be given on start,stop,status survival format with
The phreg_rct can be used for counting process style data, and thus covers situations with
and will in all cases compute augmentations
library(mets) set.seed(100) ## Lu, Tsiatis simulation data <- mets:::simLT(0.7,100) dfactor(data) <- Z.f~Z out <- phreg_rct(Surv(time,status)~Z.f,data=data,augmentR0=~X,augmentC=~factor(Z):X) summary(out) ###out <- phreg_rct(Surv(time,status)~Z.f,data=data,augmentR0=~X,augmentC=~X) ###out <- phreg_rct(Surv(time,status)~Z.f,data=data,augmentR0=~X,augmentC=~factor(Z):X,cens.model=~+1)
Results consitent with speff of library(speff2trial)
###library(speff2trial) library(mets) data(ACTG175) ### data <- ACTG175[ACTG175$arms==0 | ACTG175$arms==1, ] data <- na.omit(data[,c("days","cens","arms","strat","cd40","cd80","age")]) data$days <- data$days+runif(nrow(data))*0.01 dfactor(data) <- arms.f~arms notrun <- 1 if (notrun==0) { fit1 <- speffSurv(Surv(days,cens)~cd40+cd80+age,data=data,trt.id="arms",fixed=TRUE) summary(fit1) } # # Treatment effect # Log HR SE LowerCI UpperCI p # Prop Haz -0.70375 0.12352 -0.94584 -0.46165 1.2162e-08 # Speff -0.72430 0.12051 -0.96050 -0.48810 1.8533e-09 out <- phreg_rct(Surv(days,cens)~arms.f,data=data,augmentR0=~cd40+cd80+age,augmentC=~cd40+cd80+age) summary(out)
The study is actually block-randomized according (?) so the standard should be computed with an adjustment that is equivalent to augmenting with this block as factor
dtable(data,~strat+arms) dfactor(data) <- strat.f~strat out <- phreg_rct(Surv(days,cens)~arms.f,data=data,augmentR0=~strat.f) summary(out)
Recurrents events simulation with death and censoring.
n <- 1000 beta <- 0.15; data(base1cumhaz) data(base4cumhaz) data(drcumhaz) dr <- scalecumhaz(drcumhaz,1) base1 <- scalecumhaz(base1cumhaz,1) base4 <- scalecumhaz(base4cumhaz,0.5) cens <- rbind(c(0,0),c(2000,0.5),c(5110,3)) ce <- 3; betao1 <- 0 varz <- 1; dep=4; X <- z <- rgamma(n,1/varz)*varz Z0 <- NULL px <- 0.5 if (betao1!=0) px <- lava::expit(betao1*X) A0 <- rbinom(n,1,px) r1 <- exp(A0*beta[1]) rd <- exp( A0 * 0.15) rc <- exp( A0 * 0 ) ### rr <- mets:::simLUCox(n,base1,death.cumhaz=dr,r1=r1,Z0=X,dependence=dep,var.z=varz,cens=ce/5000) rr$A0 <- A0[rr$id] rr$z1 <- attr(rr,"z")[rr$id] rr$lz1 <- log(rr$z1) rr$X <- rr$lz1 rr$lX <- rr$z1 rr$statusD <- rr$status rr <- dtransform(rr,statusD=2,death==1) rr <- count.history(rr) rr$Z <- rr$A0 data <- rr data$Z.f <- as.factor(data$Z) data$treattime <- 0 data <- dtransform(data,treattime=1,lbnr__id==1) dlist(data,start+stop+statusD+A0+z1+treattime+Count1~id|id %in% c(4,5))
Now we fit the model
fit2 <- phreg_rct(Event(start,stop,statusD)~Z.f+cluster(id),data=data, treat.var="treattime",typesR=c("non","R0"),typesC=c("non","C","dynC"), augmentR0=~z1,augmentC=~z1+Count1) summary(fit2)
n <- 500 beta=c(0.3,0.3);betatr=0.3;betac=0;betao=0;betao1=0;ce=3;fixed=1;sim=1;dep=4;varz=1;ztr=0; ce <- 3 ## take possible frailty Z0 <- rgamma(n,1/varz)*varz px0 <- 0.5; if (betao!=0) px0 <- expit(betao*Z0) A0 <- rbinom(n,1,px0) r1 <- exp(A0*beta[1]) # px1 <- 0.5; if (betao1!=0) px1 <- expit(betao1*Z0) A1 <- rbinom(n,1,px1) r2 <- exp(A1*beta[2]) rtr <- exp(A0*betatr[1]) rr <- mets:::simLUCox(n,base1,death.cumhaz=dr,cumhaz2=base1,rtr=rtr,betatr=0.3,A0=A0,Z0=Z0, r1=r1,r2=r2,dependence=dep,var.z=varz,cens=ce/5000,ztr=ztr) rr$z1 <- attr(rr,"z")[rr$id] rr$A1 <- A1[rr$id] rr$A0 <- A0[rr$id] rr$lz1 <- log(rr$z1) rr <- count.history(rr) rr$A1t <- 0 rr <- dtransform(rr,A1t=A1,Count2==1) rr$At.f <- rr$A0 rr$A0.f <- factor(rr$A0) rr$A1.f <- factor(rr$A1) rr <- dtransform(rr, At.f = A1, Count2 == 1) rr$At.f <- factor(rr$At.f) dfactor(rr) <- A0.f~A0 rr$treattime <- 0 rr <- dtransform(rr,treattime=1,lbnr__id==1) rr$lagCount2 <- dlag(rr$Count2) rr <- dtransform(rr,treattime=1,Count2==1 & (Count2!=lagCount2)) dlist(rr,start+stop+statusD+A0+A1+A1t+At.f+Count2+z1+treattime+Count1~id|id %in% c(5,10))
Now fitting the model and computing different augmentations (true values 0.3 and 0.3)
sse <- phreg_rct(Event(start,time,statusD)~A0.f+A1t+cluster(id),data=rr, typesR=c("non","R0","R1","R01"),typesC=c("non","C","dynC"),treat.var="treattime", treat.model=At.f~factor(Count2), augmentR0=~z1,augmentR1=~z1,augmentC=~z1+Count1+A1t) summary(sse)
We take interest in $N_1$ but also have death $N_d$.
Now we need that given $X_0$
and given $\bar X_1$ the history accumulated at time $T_R$ of 2nd randomization
and
to link the counterfactual quantities to observed data.
We must use IPTW weighted Cox score and augment as before
In addition we need that the censoring is independent given for example $A_0$
To use the phreg_rct in this situation
fit2 <- phreg_rct(Event(start,stop,statusD)~Z.f+cluster(id),data=data, treat.var="treattime",typesR=c("non","R0"),typesC=c("non","C","dynC"), RCT=FALSE,treat.model=Z.f~z1,augmentR0=~z1,augmentC=~z1+Count1) summary(fit2)
and for twostage randomization
sse <- phreg_rct(Event(start,time,statusD)~A0.f+A1t+cluster(id),data=rr, typesR=c("non","R0","R1","R01"),typesC=c("non","C","dynC"), treat.var="treattime", RCT=FALSE, treat.model=At.f~z1*factor(Count2), augmentR0=~z1,augmentR1=~z1,augmentC=~z1+Count1+A1t) summary(sse)
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.