View source: R/mice.impute.simputation.R
| mice.impute.simputation | R Documentation | 
This imputation method provides a wrapper function to univariate imputation methods in the simputation package.
mice.impute.simputation(y, ry, x, Fun=NULL, Fun_args=NULL, ... )
| y | Incomplete data vector of length  | 
| ry | Vector of missing data pattern ( | 
| x | Matrix ( | 
| Fun | Name of imputation functions in simputation package, e.g.,
 | 
| Fun_args | Optional argument list for  | 
| ... | Further arguments to be passed | 
Selection of imputation methods included in the simputation package:
linear regression: simputation::impute_lm, 
robist linear regression with M-estimators:
simputation::impute_rlm, 
regularized regression with lasso/elasticnet/ridge regression:
simputation::impute_en, 
CART models or random forests:
simputation::impute_cart,
simputation::impute_rf, 
Hot deck imputation:
simputation::impute_rhd,
simputation::impute_shd, 
Predictive mean matching:
simputation::impute_pmm, 
k-nearest neighbours imputation:
simputation::impute_knn
A vector of length nmis=sum(!ry) with imputed values.
## Not run: 
#############################################################################
# EXAMPLE 1: Nhanes example
#############################################################################
library(mice)
library(simputation)
data(nhanes, package="mice")
dat <- nhanes
#** imputation methods
method <- c(age="",bmi="norm", hyp="norm", chl="simputation")
Fun <- list( chl=simputation::impute_lm)
Fun_args <- list( chl=list(add_residual="observed") )
#** do imputations
imp <- mice::mice(dat, method=method, Fun=Fun, Fun_args=Fun_args)
summary(imp)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.