stats0: Descriptive Statistics for a Vector or a Data Frame

Description Usage Arguments Value Author(s) See Also Examples

View source: R/stats0.R

Description

Applies descriptive statistics to a vector or a data frame. The function stats0 is a general function. This function is used for extending the basic descriptive statistics functions from the base and stats package. The function prop_miss computes the proportion of missing data for each variable.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
stats0(x, FUN, na.rm=TRUE,...)

max0(x, na.rm=TRUE)
mean0(x, na.rm=TRUE)
min0(x, na.rm=TRUE)
quantile0(x, probs = seq(0, 1, 0.25), na.rm=TRUE)
sd0(x, na.rm=TRUE)
var0(x, na.rm=TRUE)

prop_miss(x)

Arguments

x

Vector or a data frame

FUN

Function which is applied to x

na.rm

Logical indicating whether missing data should be removed

probs

Probabilities

...

Further arguments to be passed

Value

A vector or a matrix

Author(s)

Alexander Robitzsch

See Also

base::max, base::mean, base::min, stats::quantile, stats::sd, stats::var

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#############################################################################
# EXAMPLE 1: Descriptive statistics toy datasets
#############################################################################	

#--- simulate vector y and data frame dat
set.seed(765)
N <- 25    # number of observations
y <- stats::rnorm(N)
V <- 4    # number of variables
dat <- matrix( stats::rnorm( N*V ) , ncol=V )
colnames(dat) <- paste0("V",1:V)

#-- standard deviation
apply( dat , 2 , stats::sd )
sd0( dat )
#-- mean
apply( dat , 2 , base::mean )
mean0( dat )
#-- quantile
apply( dat , 2 , stats::quantile )
quantile0( dat )
#-- minimum and maximum
min0(dat)
max0(dat)

#*** apply functions to missing data
dat1 <- dat
dat1[ cbind( c(2,5) ,2) ] <- NA

#-- proportion of missing data
prop_miss( dat1 )
#-- MAD statistic
stats0( dat , FUN = stats::mad )
#-- SD
sd0(y)

Example output

Loading required package: mice
* miceadds 2.5-9 (2017-06-17 14:42:44)
       V1        V2        V3        V4 
0.9480664 1.1013884 0.9019879 0.7371857 
       V1        V2        V3        V4 
0.9480664 1.1013884 0.9019879 0.7371857 
          V1           V2           V3           V4 
-0.226196785  0.574153533  0.112860173 -0.004732666 
          V1           V2           V3           V4 
-0.226196785  0.574153533  0.112860173 -0.004732666 
              V1         V2         V3          V4
0%   -2.24235286 -0.8546087 -1.4362801 -1.07327985
25%  -0.83641426 -0.3645960 -0.5983010 -0.52963615
50%  -0.06835345  0.4787022 -0.1094036  0.06631764
75%   0.54462543  0.9859189  0.8828221  0.32541820
100%  1.18778051  3.1118669  1.6148352  2.15683057
              V1         V2         V3          V4
0%   -2.24235286 -0.8546087 -1.4362801 -1.07327985
25%  -0.83641426 -0.3645960 -0.5983010 -0.52963615
50%  -0.06835345  0.4787022 -0.1094036  0.06631764
75%   0.54462543  0.9859189  0.8828221  0.32541820
100%  1.18778051  3.1118669  1.6148352  2.15683057
        V1         V2         V3         V4 
-2.2423529 -0.8546087 -1.4362801 -1.0732798 
      V1       V2       V3       V4 
1.187781 3.111867 1.614835 2.156831 
  V1   V2   V3   V4 
0.00 0.08 0.00 0.00 
       V1        V2        V3        V4 
1.1070882 1.1221094 1.1156242 0.8516409 
[1] 1.02124

miceadds documentation built on Aug. 25, 2017, 1:03 a.m.