Nothing
##
## This file contains MODIFIED COPIES of the anova.lm method from the base package stats (2014-10-31),
## and Anova.lm from the package car (2014-10-10).
##
anova.lmm <- function(object, ...){
if(!is.null(object$random)){
if(inherits(object, "mlm"))
return(AnovaMixMLM(object, 1))
else
return(AnovaMix(object, 1))
} else {
class(object) <- setdiff(class(object), "lmm")
return(anova(object,...))
}
}
Anova.lmm <- function(mod, ...){
mf <- match.call()
if(!is.null(mod$random)){
if(mf$type=="I" || mf$type=="1"){
if(inherits(mod, "mlm"))
return(AnovaMixMLM(mod, 1))
else
return(AnovaMix(mod, 1))
} else {
if(mf$type=="II" || mf$type=="2"){
if(inherits(mod, "mlm"))
return(AnovaMixMLM(mod, 2))
else
return(AnovaMix(mod, 2))
} else {
if(inherits(mod, "mlm"))
return(AnovaMixMLM(mod, 3))
else
return(AnovaMix(mod, 3))
}
}
} else {
if(inherits(mod, "mlm"))
class(mod) <- c("mlm", "lm")
else
class(mod) <- "lm"
return(Anova(mod, ...))
}
}
# Mixed model ANOVA
AnovaMix <- function(object, SStype){
formula <- formula(object)
formula.text <- as.character(formula)
all.effects <- object$random$all # All model effects and interactions
fixed.effects <- object$random$fixed # All fixed effects
random.effects <- object$random$random # All random effects
main.rands.only.inter <- object$random$main.rands.only.inter # Random effects only present in interactions
restrictedModel <- !object$random$unrestricted
data <- object$model
n.effects <- length(all.effects)
main.effects <- fparse(formula) # All main effects (even though only included in interactions)
n.levels <- numeric(length(main.effects))
for(i in 1:length(main.effects)){
n.levels[i] <- length(levels(data[,main.effects[i]])) # Number of levels per main effect
}
names(n.levels) <- main.effects
N <- dim(data)[1]
ind.randoms <- numeric()
ind.randoms <- match(random.effects,all.effects) # Placement of random effects in "all.effects"
ind.fixed <- match(fixed.effects,all.effects) # Placement of fixed effects in "all.effects"
ind.fixed <- setdiff(1:n.effects,ind.randoms)
n.randoms <- length(ind.randoms)
# Estimate fixed effect Anova
noRandom <- object
noRandom$random <- NULL
if(inherits(noRandom, "mlm"))
class(noRandom) <- c("mlm", "lm")
else
class(noRandom) <- "lm"
if(SStype == 1 || SStype == "I")
fixed.model <- as.data.frame(stats::anova(noRandom))
if(SStype == 2 || SStype == "II")
fixed.model <- as.data.frame(car::Anova(noRandom, type='II', singular.ok=TRUE))
if(SStype == 3 || SStype == "III")
fixed.model <- as.data.frame(car::Anova(noRandom, type='III', singular.ok=TRUE))
fixed.model <- fixed.model[c(all.effects,"Residuals"),] # Sort according to all.effects
if(!any("Mean Sq"%in%colnames(fixed.model))){
fixed.model <- cbind(fixed.model[,"Sum Sq"]/fixed.model[,"Df"], fixed.model)
colnames(fixed.model)[1] <- "Mean Sq"
}
# Check which effects should use interactions as denominators instead of error
approved.interactions <- list()
approved.interactions.fixed <- list()
for(i in 1:n.effects){
this.effect <- strsplit(all.effects[i],":")[[1]]
which.contains <- numeric()
for(j in 1:n.effects){ # Find all other effects containing this.effect
effect.names <- is.element(strsplit(all.effects[j],":")[[1]],this.effect)
# Check if current effect is contained in another effect of higher interaction level
if(i!=j && sum(effect.names)==length(this.effect) && length(effect.names)>length(this.effect)){
which.contains <- union(which.contains,j)}
}
which.contains <- sort(which.contains)
if(length(which.contains)>0){
approved.interaction <- numeric(length(which.contains))
approved.interaction.fixed <- numeric(length(which.contains))
for(j in 1:length(which.contains)){
if(restrictedModel){
# Check if any of the other main effect contained in the higher order interaction is random
approved.interaction[j] <- prod(is.element(setdiff(strsplit(all.effects[which.contains],":")[[j]],strsplit(all.effects[i],":")[[1]]),c(random.effects,main.rands.only.inter)))
} else {
if(any(is.element(ind.fixed,i))){
# Check if any of the other main effects contained in the higher order interaction is fixed
approved.interaction.fixed[j] <- prod(is.element(setdiff(strsplit(all.effects[which.contains],":")[[j]],strsplit(all.effects[i],":")[[1]]),fixed.effects))
}
# Check if all of the main effects contained in the higher order interaction are random
approved.interaction[j] <- 1-prod(!is.element(strsplit(all.effects[which.contains],":")[[j]],c(random.effects,main.rands.only.inter)))
}
}
if(length(which(approved.interaction==1))>0){
approved.interactions[[i]] <- which.contains[which(approved.interaction==1)]}
else{
approved.interactions[[i]] <- FALSE}
if(length(which(approved.interaction.fixed==1))>0){
approved.interactions.fixed[[i]] <- which.contains[which(approved.interaction.fixed==1)]}
else{
approved.interactions.fixed[[i]] <- FALSE}
}
else{
approved.interactions[[i]] <- FALSE
approved.interactions.fixed[[i]] <- FALSE}
}
# Find variance components (except MSerror),
# and find linear combinations needed to produce denominators of F-statistics
mix.model.attr <- list()
denom.df <- numeric(n.effects+1)
exp.mean.sq <- rep(paste("(",n.effects+1,")", sep=""), n.effects+1)
var.comps <- numeric(n.effects+1)*NA
var.comps[n.effects+1] <- fixed.model[n.effects+1,"Mean Sq"]
errors <- numeric(n.effects)
for(i in 1:n.effects) {
if(!is.logical(approved.interactions[[i]])){
# Set up matrix A and vector b to find linear combinations of effects to use as denominators in F statistics
## This is probably where unbalancedness should be included !!!!!!!!
lap <- length(approved.interactions[[i]])
A <- matrix(0,lap+1,n.effects+1)
b <- rep(1,lap+1)
for(j in 1:lap){
A[j,approved.interactions[[approved.interactions[[i]][j]]]] <- 1
A[j,approved.interactions[[i]][j]] <- 1
k <- length(approved.interactions[[i]])+1-j
exp.mean.sq[i] <- paste(exp.mean.sq[i], " + ", N/prod(n.levels[strsplit(all.effects[approved.interactions[[i]][k]],":")[[1]]]), " (",which(all.effects==all.effects[approved.interactions[[i]][k]]),")", sep="")
}
A[, n.effects+1] <- 1
A <- A[,apply(A,2,sum)>0]
denominator <- solve(t(A),b)
denominator.id <- c(approved.interactions[[i]],n.effects+1)
denominator.id <- denominator.id[denominator!=0]
mix.model.attr[[i]] <- denominator <- denominator[denominator!=0]
names(mix.model.attr[[i]]) <- denominator.id
if(length(denominator)==1){ # Original df
denom.df[i] <- fixed.model[denominator.id,"Df"]}
else{ # Satterthwaite's df correction
denom.df[i] <- sum(fixed.model[denominator.id,"Mean Sq"]*denominator)^2/sum((fixed.model[denominator.id,"Mean Sq"]*denominator)^2/fixed.model[denominator.id,"Df"])}
} else{
denominator.id <- n.effects+1
mix.model.attr[[i]] <- 1
names(mix.model.attr[[i]]) <- denominator.id
denom.df[i] <- fixed.model[denominator.id,"Df"]
denominator <- 1
}
if(sum(ind.randoms==i)>0){
exp.mean.sq[i] <- paste(exp.mean.sq[i], " + ", N/prod(n.levels[strsplit(all.effects[i],":")[[1]]]), " (",i,")", sep="")
var.comps[i] <- (fixed.model[i,"Mean Sq"]-fixed.model[denominator.id,"Mean Sq"]%*%denominator)/(N/prod(n.levels[strsplit(all.effects[i],":")[[1]]]))}
else{
if(!is.logical(approved.interactions.fixed[[i]])){
ex.ind <- paste(",", paste(approved.interactions.fixed[[i]], sep="", collapse=","),sep="")}
else{
ex.ind <- ""}
exp.mean.sq[i] <- paste(exp.mean.sq[i], " + ", N/prod(n.levels[strsplit(all.effects[i],":")[[1]]]), " Q[",i,ex.ind,"]", sep="")
}
errors[i] <- fixed.model[denominator.id,"Mean Sq"]%*%denominator
fixed.model[i,"F value"] <- fixed.model[i,"Mean Sq"]/(fixed.model[denominator.id,"Mean Sq"]%*%denominator)
if(is.na(fixed.model[i,"F value"]) || fixed.model[i,"F value"]<0){
fixed.model[i,"F value"] <- NA
}
fixed.model[i,"Pr(>F)"] <- 1-pf(fixed.model[i,"F value"],fixed.model[i,"Df"],denom.df[i])
}
names(denom.df) <- rownames(fixed.model)
object <- list(lm=object, anova=fixed.model, err.terms=c(mix.model.attr,NA), denom.df=denom.df, restricted=restrictedModel,
exp.mean.sq=exp.mean.sq, var.comps=var.comps, random.effects=random.effects, ind.randoms=ind.randoms, formula.text=formula.text, errors=errors)
class(object) <- "AnovaMix"
object
}
## Print method for object from AnovaMix
print.AnovaMix <- function(x,...){
object <- x
N <- length(object$err.terms)
output1 <- object$anova
Fs <- PrF <- character(N)
PrF[!is.na(output1$"Pr(>F)")] <- format(round(output1$"Pr(>F)"[!is.na(output1$"Pr(>F)")],4), digits=1, scientific=FALSE, nsmall=4)
PrF[is.na(output1$"Pr(>F)")] <- "-"
output1$"Pr(>F)" <- PrF
Fs[!is.na(output1$"F value")] <- format(output1$"F value"[!is.na(output1$"F value")], digits=1, scientific=FALSE, nsmall=2)
Fs[is.na(output1$"F value")] <- "-"
output1$"F value" <- Fs
output1$"Sum Sq" <- format(output1$"Sum Sq", digits=1, scientific=FALSE, nsmall=2)
output1$"Mean Sq" <- format(output1$"Mean Sq", digits=1, scientific=FALSE, nsmall=2)
err.terms <- character(length(object$err.terms))
for(i in 1:N){
if(length(object$err.terms[[i]])==1 && is.na(object$err.terms[[i]])){
err.terms[i] <- "-"
}
else{
err.terms[i] <- paste(ifelse(object$err.terms[[i]][1]>1,paste(object$err.terms[[i]][1],"*",sep=""),""),"(",names(object$err.terms[[i]][1]),")",sep="")
if(length(object$err.terms[[i]])>1){
for(j in 2:length(object$err.terms[[i]])){
if(object$err.terms[[i]][j]<0){
err.terms[i] <- paste(err.terms[i], paste(ifelse(object$err.terms[[i]][j]<(-1),paste(abs(object$err.terms[[i]][j]),"*",sep=""),""), "(", names(object$err.terms[[i]][j]), ")", sep=""), sep=" - ")
} else {
err.terms[i] <- paste(err.terms[i], paste(ifelse(object$err.terms[[i]][j]>1,paste(object$err.terms[[i]][j],"*",sep=""),""), "(", names(object$err.terms[[i]][j]), ")", sep=""), sep=" + ")}
}
}
}
}
var.comps <- format(object$var.comps, digits=3)
var.comps[setdiff(1:(N-1), object$ind.randoms)] <- "fixed"
denom.df <- character(N)
denom.df[!is.na(object$denom.df)&round(object$denom.df)==object$denom.df] <- format(object$denom.df[!is.na(object$denom.df)&round(object$denom.df)==object$denom.df], digits=3)
denom.df[!is.na(object$denom.df)&round(object$denom.df)!=object$denom.df] <- format(object$denom.df[!is.na(object$denom.df)&round(object$denom.df)!=object$denom.df], digits=3)
denom.df[object$denom.df==0] <- "-"
output2 <- data.frame("Err.terms"=err.terms, "Denom.df"=denom.df, "VC(SS)"=var.comps)
colnames(output2) <- c("Err.term(s)", "Err.df", "VC(SS)")
output3 <- data.frame("E(MS)"=format(object$exp.mean.sq))
colnames(output3) <- "Expected mean squares"
rownames(output2) <- paste(1:N," ",rownames(object$anova), sep="")
rownames(output3) <- rownames(object$anova)
if(!object$restricted){
un <- "un"}
else{
un <- ""}
cat("Analysis of variance (", un, "restricted model)\n", sep="")
cat("Response: ", object$formula.text[2], "\n", sep="")
print(format(output1, digits=3))
cat("\n")
print(output2)
cat("(VC = variance component)\n\n")
print(output3)
}
AnovaMixMLM <- function(object, SStype){
formula <- formula(object)
formula.text <- as.character(formula)
all.effects <- object$random$all # All model effects and interactions
fixed.effects <- object$random$fixed # All fixed effects
random.effects <- object$random$random # All random effects
main.rands.only.inter <- object$random$main.rands.only.inter # Random effects only present in interactions
restrictedModel <- !object$random$unrestricted
data <- object$model
n.effects <- length(all.effects)
main.effects <- fparse(formula) # All main effects (even though only included in interactions)
n.levels <- numeric(length(main.effects))
for(i in 1:length(main.effects)){
n.levels[i] <- length(levels(data[,main.effects[i]])) # Number of levels per main effect
}
names(n.levels) <- main.effects
N <- dim(data)[1]
ind.randoms <- numeric()
ind.randoms <- match(random.effects,all.effects) # Placement of random effects in "all.effects"
ind.fixed <- match(fixed.effects,all.effects) # Placement of fixed effects in "all.effects"
ind.fixed <- setdiff(1:n.effects,ind.randoms)
n.randoms <- length(ind.randoms)
# Estimate fixed effect Anova
noRandom <- object
noRandom$random <- NULL
if(inherits(noRandom, "mlm"))
class(noRandom) <- c("mlm", "lm")
else
class(noRandom) <- "lm"
univar <- noRandom
class(univar) <- c("lm")
fixed.models <- list()
if(SStype == 1 || SStype == "I")
for(i in 1:ncol(object$coefficients)){
univar$coefficients <- object$coefficients[,i]
univar$residuals <- object$residuals[,i]
fixed.models[[i]] <- as.data.frame(stats::anova(univar))[c(all.effects,"Residuals"),]
}
if(SStype == 2 || SStype == "II"){
# Loop over all responses, convert to univariate and perform ANOVA
for(i in 1:ncol(object$coefficients)){
univar$coefficients <- object$coefficients[,i]
univar$residuals <- object$residuals[,i]
fixed.models[[i]] <- as.data.frame(car::Anova(univar, type='II', singular.ok=TRUE))[c(all.effects,"Residuals"),]
}
}
if(SStype == 3 || SStype == "III")
for(i in 1:ncol(object$coefficients)){
univar$coefficients <- object$coefficients[,i]
univar$residuals <- object$residuals[,i]
fixed.models[[i]] <- as.data.frame(car::Anova(univar, type='III', singular.ok=TRUE))[c(all.effects,"Residuals"),]
}
if(!any("Mean Sq"%in%colnames(fixed.models[[1]]))){
for(i in 1:length(fixed.models)){
fixed.models[[i]] <- cbind("Mean Sq"=fixed.models[[i]][,"Sum Sq"]/fixed.models[[i]][,"Df"], fixed.models[[i]])
colnames(fixed.models[[i]])[1] <- "Mean Sq"
}
}
# Check which effects should use interactions as denominators instead of error
approved.interactions <- list()
approved.interactions.fixed <- list()
for(i in 1:n.effects){
this.effect <- strsplit(all.effects[i],":")[[1]]
which.contains <- numeric()
for(j in 1:n.effects){ # Find all other effects containing this.effect
effect.names <- is.element(strsplit(all.effects[j],":")[[1]],this.effect)
# Check if current effect is contained in another effect of higher interaction level
if(i!=j && sum(effect.names)==length(this.effect) && length(effect.names)>length(this.effect)){
which.contains <- union(which.contains,j)}
}
which.contains <- sort(which.contains)
if(length(which.contains)>0){
approved.interaction <- numeric(length(which.contains))
approved.interaction.fixed <- numeric(length(which.contains))
for(j in 1:length(which.contains)){
if(restrictedModel){
# Check if any of the other main effect contained in the higher order interaction is random
approved.interaction[j] <- prod(is.element(setdiff(strsplit(all.effects[which.contains],":")[[j]],strsplit(all.effects[i],":")[[1]]),c(random.effects,main.rands.only.inter)))
} else {
if(any(is.element(ind.fixed,i))){
# Check if any of the other main effects contained in the higher order interaction is fixed
approved.interaction.fixed[j] <- prod(is.element(setdiff(strsplit(all.effects[which.contains],":")[[j]],strsplit(all.effects[i],":")[[1]]),fixed.effects))
}
# Check if all of the main effects contained in the higher order interaction are random
approved.interaction[j] <- 1-prod(!is.element(strsplit(all.effects[which.contains],":")[[j]],c(random.effects,main.rands.only.inter)))
}
}
if(length(which(approved.interaction==1))>0){
approved.interactions[[i]] <- which.contains[which(approved.interaction==1)]}
else{
approved.interactions[[i]] <- FALSE}
if(length(which(approved.interaction.fixed==1))>0){
approved.interactions.fixed[[i]] <- which.contains[which(approved.interaction.fixed==1)]}
else{
approved.interactions.fixed[[i]] <- FALSE}
}
else{
approved.interactions[[i]] <- FALSE
approved.interactions.fixed[[i]] <- FALSE}
}
# Find variance components (except MSerror),
# and find linear combinations needed to produce denominators of F-statistics
mix.model.attr <- errorss <- var.compss <- list()
for(j1 in 1:ncol(object$coefficients)){
fixed.model <- fixed.models[[j1]]
denom.df <- numeric(n.effects+1)
exp.mean.sq <- rep(paste("(",n.effects+1,")", sep=""), n.effects+1)
var.comps <- numeric(n.effects+1)*NA
var.comps[n.effects+1] <- fixed.model[n.effects+1,"Mean Sq"]
errors <- numeric(n.effects)
for(i in 1:n.effects) {
if(!is.logical(approved.interactions[[i]])){
# Set up matrix A and vector b to find linear combinations of effects to use as denominators in F statistics
## This is probably where unbalancedness should be included !!!!!!!!
lap <- length(approved.interactions[[i]])
A <- matrix(0,lap+1,n.effects+1)
b <- rep(1,lap+1)
for(j in 1:lap){
A[j,approved.interactions[[approved.interactions[[i]][j]]]] <- 1
A[j,approved.interactions[[i]][j]] <- 1
k <- length(approved.interactions[[i]])+1-j
exp.mean.sq[i] <- paste(exp.mean.sq[i], " + ", N/prod(n.levels[strsplit(all.effects[approved.interactions[[i]][k]],":")[[1]]]), " (",which(all.effects==all.effects[approved.interactions[[i]][k]]),")", sep="")
}
A[, n.effects+1] <- 1
A <- A[,apply(A,2,sum)>0]
denominator <- solve(t(A),b)
denominator.id <- c(approved.interactions[[i]],n.effects+1)
denominator.id <- denominator.id[denominator!=0]
mix.model.attr[[i]] <- denominator <- denominator[denominator!=0]
names(mix.model.attr[[i]]) <- denominator.id
if(length(denominator)==1){ # Original df
denom.df[i] <- fixed.model[denominator.id,"Df"]}
else{ # Satterthwaite's df correction
denom.df[i] <- sum(fixed.model[denominator.id,"Mean Sq"]*denominator)^2/sum((fixed.model[denominator.id,"Mean Sq"]*denominator)^2/fixed.model[denominator.id,"Df"])}
} else{
denominator.id <- n.effects+1
mix.model.attr[[i]] <- 1
names(mix.model.attr[[i]]) <- denominator.id
denom.df[i] <- fixed.model[denominator.id,"Df"]
denominator <- 1
}
if(sum(ind.randoms==i)>0){
exp.mean.sq[i] <- paste(exp.mean.sq[i], " + ", N/prod(n.levels[strsplit(all.effects[i],":")[[1]]]), " (",i,")", sep="")
var.comps[i] <- (fixed.model[i,"Mean Sq"]-fixed.model[denominator.id,"Mean Sq"]%*%denominator)/(N/prod(n.levels[strsplit(all.effects[i],":")[[1]]]))
} else{
if(!is.logical(approved.interactions.fixed[[i]])){
ex.ind <- paste(",", paste(approved.interactions.fixed[[i]], sep="", collapse=","),sep="")
} else{
ex.ind <- ""}
exp.mean.sq[i] <- paste(exp.mean.sq[i], " + ", N/prod(n.levels[strsplit(all.effects[i],":")[[1]]]), " Q[",i,ex.ind,"]", sep="")
}
errors[i] <- fixed.model[denominator.id,"Mean Sq"]%*%denominator
fixed.model[i,"F value"] <- fixed.model[i,"Mean Sq"]/(fixed.model[denominator.id,"Mean Sq"]%*%denominator)
if(is.na(fixed.model[i,"F value"]) || fixed.model[i,"F value"]<0){
fixed.model[i,"F value"] <- NA
}
fixed.model[i,"Pr(>F)"] <- 1-pf(fixed.model[i,"F value"],fixed.model[i,"Df"],denom.df[i])
}
fixed.models[[j1]] <- fixed.model
errorss[[j1]] <- errors
var.compss[[j1]] <- var.comps
}
if(!is.null(colnames(object$coefficients))){
names(fixed.models) <- colnames(object$coefficients)
names(errorss) <- colnames(object$coefficients)
names(var.compss) <- colnames(object$coefficients)
}
names(denom.df) <- rownames(fixed.model)
object <- list(lm=object, anova=fixed.models, err.terms=c(mix.model.attr,NA), denom.df=denom.df, restricted=restrictedModel,
exp.mean.sq=exp.mean.sq, var.comps=var.compss, random.effects=random.effects, ind.randoms=ind.randoms, formula.text=formula.text, errors=errorss)
class(object) <- "AnovaMixMLM"
object
}
## Print method for object from AnovaMixMLM
print.AnovaMixMLM <- function(x, var = 1, ...){
object <- x
if(is.numeric(var) && !is.null(names(object$anova)))
var <- names(object$anova)[var]
N <- length(object$err.terms)
output1 <- object$anova[[var]]
Fs <- PrF <- character(N)
PrF[!is.na(output1$"Pr(>F)")] <- format(round(output1$"Pr(>F)"[!is.na(output1$"Pr(>F)")],4), digits=1, scientific=FALSE, nsmall=4)
PrF[is.na(output1$"Pr(>F)")] <- "-"
output1$"Pr(>F)" <- PrF
Fs[!is.na(output1$"F value")] <- format(output1$"F value"[!is.na(output1$"F value")], digits=1, scientific=FALSE, nsmall=2)
Fs[is.na(output1$"F value")] <- "-"
output1$"F value" <- Fs
output1$"Sum Sq" <- format(output1$"Sum Sq", digits=1, scientific=FALSE, nsmall=2)
output1$"Mean Sq" <- format(output1$"Mean Sq", digits=1, scientific=FALSE, nsmall=2)
err.terms <- character(length(object$err.terms))
for(i in 1:N){
if(length(object$err.terms[[i]])==1 && is.na(object$err.terms[[i]])){
err.terms[i] <- "-"
}
else{
err.terms[i] <- paste(ifelse(object$err.terms[[i]][1]>1,paste(object$err.terms[[i]][1],"*",sep=""),""),"(",names(object$err.terms[[i]][1]),")",sep="")
if(length(object$err.terms[[i]])>1){
for(j in 2:length(object$err.terms[[i]])){
if(object$err.terms[[i]][j]<0){
err.terms[i] <- paste(err.terms[i], paste(ifelse(object$err.terms[[i]][j]<(-1),paste(abs(object$err.terms[[i]][j]),"*",sep=""),""), "(", names(object$err.terms[[i]][j]), ")", sep=""), sep=" - ")
} else {
err.terms[i] <- paste(err.terms[i], paste(ifelse(object$err.terms[[i]][j]>1,paste(object$err.terms[[i]][j],"*",sep=""),""), "(", names(object$err.terms[[i]][j]), ")", sep=""), sep=" + ")}
}
}
}
}
var.comps <- format(object$var.comps[[var]], digits=3)
var.comps[setdiff(1:(N-1), object$ind.randoms)] <- "fixed"
denom.df <- character(N)
denom.df[!is.na(object$denom.df)&round(object$denom.df)==object$denom.df] <- format(object$denom.df[!is.na(object$denom.df)&round(object$denom.df)==object$denom.df], digits=3)
denom.df[!is.na(object$denom.df)&round(object$denom.df)!=object$denom.df] <- format(object$denom.df[!is.na(object$denom.df)&round(object$denom.df)!=object$denom.df], digits=3)
denom.df[object$denom.df==0] <- "-"
output2 <- data.frame("Err.terms"=err.terms, "Denom.df"=denom.df, "VC(SS)"=var.comps)
colnames(output2) <- c("Err.term(s)", "Err.df", "VC(SS)")
output3 <- data.frame("E(MS)"=format(object$exp.mean.sq))
colnames(output3) <- "Expected mean squares"
rownames(output2) <- paste(1:N," ",rownames(object$anova[[var]]), sep="")
rownames(output3) <- rownames(object$anova[[var]])
if(!object$restricted){
un <- "un"}
else{
un <- ""}
cat("Analysis of variance (", un, "restricted model)\n", sep="")
cat("Response: ", object$formula.text[2], ", variable: ", var, "\n", sep="")
print(format(output1, digits=3))
cat("\n")
print(output2)
cat("(VC = variance component)\n\n")
print(output3)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.