Nothing
#' @title Feature Selection with Random Search
#'
#' @include mlr_fselectors.R
#' @name mlr_fselectors_random_search
#'
#' @description
#' Feature selection using Random Search Algorithm.
#'
#' @details
#' The feature sets are randomly drawn.
#' The sets are evaluated in batches of size `batch_size`.
#' Larger batches mean we can parallelize more, smaller batches imply a more fine-grained checking of termination criteria.
#'
#' @templateVar id random_search
#' @template section_dictionary_fselectors
#'
#' @section Control Parameters:
#' \describe{
#' \item{`max_features`}{`integer(1)`\cr
#' Maximum number of features.
#' By default, number of features in [mlr3::Task].}
#' \item{`batch_size`}{`integer(1)`\cr
#' Maximum number of feature sets to try in a batch.}
#' }
#'
#' @source
#' `r format_bib("bergstra_2012")`
#'
#' @family FSelector
#' @export
#' @examples
#' # Feature Selection
#' \donttest{
#'
#' # retrieve task and load learner
#' task = tsk("penguins")
#' learner = lrn("classif.rpart")
#'
#' # run feature selection on the Palmer Penguins data set
#' instance = fselect(
#' fselector = fs("random_search"),
#' task = task,
#' learner = learner,
#' resampling = rsmp("holdout"),
#' measure = msr("classif.ce"),
#' term_evals = 10
#' )
#'
#' # best performing feature subset
#' instance$result
#'
#' # all evaluated feature subsets
#' as.data.table(instance$archive)
#'
#' # subset the task and fit the final model
#' task$select(instance$result_feature_set)
#' learner$train(task)
#' }
FSelectorBatchRandomSearch = R6Class("FSelectorBatchRandomSearch",
inherit = FSelectorBatch,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ps(
max_features = p_int(lower = 1L),
batch_size = p_int(lower = 1L, tags = "required")
)
ps$values = list(batch_size = 10L)
super$initialize(
id = "random_search",
param_set = ps,
properties = c("single-crit", "multi-crit"),
label = "Random Search",
man = "mlr3fselect::mlr_fselectors_random_search"
)
}
),
private = list(
.optimize = function(inst) {
pars = self$param_set$values
feature_names = inst$archive$cols_x
max_features = pars$max_features %??% length(feature_names)
repeat {
X = t(replicate(pars$batch_size, {
n = sample.int(max_features, 1L)
x = sample.int(length(feature_names), n)
replace(logical(length(feature_names)), x, TRUE)
}))
colnames(X) = feature_names
inst$eval_batch(as.data.table(X))
}
}
)
)
mlr_fselectors$add("random_search", FSelectorBatchRandomSearch)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.