Nothing
#' @title Acquisition Function Augmented Expected Improvement
#'
#' @include AcqFunction.R
#' @name mlr_acqfunctions_aei
#'
#' @templateVar id aei
#' @template section_dictionary_acqfunctions
#'
#' @description
#' Augmented Expected Improvement.
#' Useful when working with noisy objectives.
#' Currently only works correctly with `"regr.km"` as surrogate model and `nugget.estim = TRUE` or given.
#'
#' @section Parameters:
#' * `"c"` (`numeric(1)`)\cr
#' Constant \eqn{c} as used in Formula (14) of Huang (2012) to reflect the degree of risk aversion. Defaults to `1`.
#'
#' @references
#' * `r format_bib("huang_2012")`
#'
#' @family Acquisition Function
#' @export
#' @examples
#' if (requireNamespace("mlr3learners") &
#' requireNamespace("DiceKriging") &
#' requireNamespace("rgenoud")) {
#' library(bbotk)
#' library(paradox)
#' library(mlr3learners)
#' library(data.table)
#'
#' set.seed(2906)
#' fun = function(xs) {
#' list(y = xs$x ^ 2 + rnorm(length(xs$x), mean = 0, sd = 1))
#' }
#' domain = ps(x = p_dbl(lower = -10, upper = 10))
#' codomain = ps(y = p_dbl(tags = "minimize"))
#' objective = ObjectiveRFun$new(fun = fun,
#' domain = domain,
#' codomain = codomain,
#' properties = "noisy")
#'
#' instance = OptimInstanceBatchSingleCrit$new(
#' objective = objective,
#' terminator = trm("evals", n_evals = 5))
#'
#' instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
#'
#' learner = lrn("regr.km",
#' covtype = "matern5_2",
#' optim.method = "gen",
#' nugget.estim = TRUE,
#' jitter = 1e-12,
#' control = list(trace = FALSE))
#'
#' surrogate = srlrn(learner, archive = instance$archive)
#'
#' acq_function = acqf("aei", surrogate = surrogate)
#'
#' acq_function$surrogate$update()
#' acq_function$update()
#' acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
#' }
AcqFunctionAEI = R6Class("AcqFunctionAEI",
inherit = AcqFunction,
public = list(
#' @field y_effective_best (`numeric(1)`)\cr
#' Best effective objective value observed so far.
#' In the case of maximization, this already includes the necessary change of sign.
y_effective_best = NULL,
#' @field noise_var (`numeric(1)`)\cr
#' Estimate of the variance of the noise.
#' This corresponds to the `nugget` estimate when using a [mlr3learners][mlr3learners::mlr_learners_regr.km] as surrogate model.
noise_var = NULL, # noise of the function
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#'
#' @param surrogate (`NULL` | [SurrogateLearner]).
#' @param c (`numeric(1)`).
initialize = function(surrogate = NULL, c = 1) {
assert_r6(surrogate, "SurrogateLearner", null.ok = TRUE)
assert_number(c, lower = 0, finite = TRUE)
constants = ps(c = p_dbl(lower = 0, default = 1))
constants$values$c = c
super$initialize("acq_aei", constants = constants, surrogate = surrogate, requires_predict_type_se = TRUE, direction = "maximize", label = "Augmented Expected Improvement", man = "mlr3mbo::mlr_acqfunctions_aei")
},
#' @description
#' Update the acquisition function and set `y_effective_best` and `noise_var`.
update = function() {
xdt = self$archive$data[, self$archive$cols_x, with = FALSE]
p = self$surrogate$predict(xdt)
y_effective = p$mean + (self$surrogate_max_to_min * self$constants$values$c * p$se) # pessimistic prediction
self$y_effective_best = min(self$surrogate_max_to_min * y_effective)
if (!is.null(self$surrogate$learner$model) && length(self$surrogate$learner$model@covariance@nugget) == 1L) {
self$noise_var = self$surrogate$learner$model@covariance@nugget # FIXME: check that this value really exists (otherwise calculate residual variance?)
} else {
lgr$warn('AcqFunctionAEI currently only works correctly with `"regr.km"` as surrogate model and `nugget.estim = TRUE` or given.')
self$noise_var = 0
}
}
),
private = list(
.fun = function(xdt, ...) {
if (is.null(self$y_effective_best)) {
stop("$y_effective_best is not set. Missed to call $update()?")
}
if (is.null(self$noise_var)) {
stop("$noise_var is not set. Missed to call $update()?")
}
p = self$surrogate$predict(xdt)
mu = p$mean
se = p$se
d = self$y_effective_best - self$surrogate_max_to_min * mu
d_norm = d / se
aei = (d * pnorm(d_norm) + se * dnorm(d_norm)) * (1 - (sqrt(self$noise_var) / sqrt(se^2L + self$noise_var)))
aei = ifelse(se < 1e-20, 0, aei)
data.table(acq_aei = aei)
}
)
)
mlr_acqfunctions$add("aei", AcqFunctionAEI)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.