| as_data_descriptor | Convert to Data Descriptor |
| as_lazy_tensor | Convert to Lazy Tensor |
| as_lr_scheduler | Convert to CallbackSetLRScheduler |
| assert_lazy_tensor | Assert Lazy Tensor |
| as_torch_callback | Convert to a TorchCallback |
| as_torch_callbacks | Convert to a list of Torch Callbacks |
| as_torch_loss | Convert to TorchLoss |
| as_torch_optimizer | Convert to TorchOptimizer |
| auto_device | Auto Device |
| batchgetter_categ | Batchgetter for Categorical data |
| batchgetter_num | Batchgetter for Numeric Data |
| callback_set | Create a Set of Callbacks for Torch |
| cross_entropy | Cross Entropy Loss |
| DataDescriptor | Data Descriptor |
| equals-.lazy_tensor | Compare lazy tensors |
| infer_shapes | Infer Shapes |
| ingress_categ | Ingress Token for Categorical Features |
| ingress_ltnsr | Ingress Token for Lazy Tensor Feature |
| ingress_num | Ingress Token for Numeric Features |
| is_lazy_tensor | Check for lazy tensor |
| lazy_shape | Shape of Lazy Tensor |
| lazy_tensor | Create a lazy tensor |
| materialize | Materialize Lazy Tensor Columns |
| materialize_internal | Materialize a Lazy Tensor |
| mlr3torch_callbacks | Dictionary of Torch Callbacks |
| mlr3torch_losses | Loss Functions |
| mlr3torch_optimizers | Optimizers |
| mlr3torch-package | mlr3torch: Deep Learning with 'mlr3' |
| mlr_backends_lazy | Lazy Data Backend |
| mlr_callback_set | Base Class for Callbacks |
| mlr_callback_set.checkpoint | Checkpoint Callback |
| mlr_callback_set.history | History Callback |
| mlr_callback_set.lr_scheduler | Learning Rate Scheduling Callback |
| mlr_callback_set.lr_scheduler_one_cycle | OneCycle Learning Rate Scheduling Callback |
| mlr_callback_set.lr_scheduler_reduce_on_plateau | Reduce On Plateau Learning Rate Scheduler |
| mlr_callback_set.progress | Progress Callback |
| mlr_callback_set.tb | TensorBoard Logging Callback |
| mlr_callback_set.unfreeze | Unfreezing Weights Callback |
| mlr_context_torch | Context for Torch Learner |
| mlr_learners.ft_transformer | FT-Transformer |
| mlr_learners.mlp | Multi Layer Perceptron |
| mlr_learners.module | Learner Torch Module |
| mlr_learners.tab_resnet | Tabular ResNet |
| mlr_learners_torch | Base Class for Torch Learners |
| mlr_learners.torch_featureless | Featureless Torch Learner |
| mlr_learners_torch_image | Image Learner |
| mlr_learners_torch_model | Learner Torch Model |
| mlr_learners.torchvision | AlexNet Image Classifier |
| mlr_pipeops_augment_center_crop | Center Crop Augmentation |
| mlr_pipeops_augment_color_jitter | Color Jitter Augmentation |
| mlr_pipeops_augment_crop | Crop Augmentation |
| mlr_pipeops_augment_hflip | Horizontal Flip Augmentation |
| mlr_pipeops_augment_random_affine | Random Affine Augmentation |
| mlr_pipeops_augment_random_choice | Random Choice Augmentation |
| mlr_pipeops_augment_random_crop | Random Crop Augmentation |
| mlr_pipeops_augment_random_horizontal_flip | Random Horizontal Flip Augmentation |
| mlr_pipeops_augment_random_order | Random Order Augmentation |
| mlr_pipeops_augment_random_resized_crop | Random Resized Crop Augmentation |
| mlr_pipeops_augment_random_vertical_flip | Random Vertical Flip Augmentation |
| mlr_pipeops_augment_resized_crop | Resized Crop Augmentation |
| mlr_pipeops_augment_rotate | Rotate Augmentation |
| mlr_pipeops_augment_vflip | Vertical Flip Augmentation |
| mlr_pipeops_module | Class for Torch Module Wrappers |
| mlr_pipeops_nn_adaptive_avg_pool1d | 1D Adaptive Average Pooling |
| mlr_pipeops_nn_adaptive_avg_pool2d | 2D Adaptive Average Pooling |
| mlr_pipeops_nn_adaptive_avg_pool3d | 3D Adaptive Average Pooling |
| mlr_pipeops_nn_avg_pool1d | 1D Average Pooling |
| mlr_pipeops_nn_avg_pool2d | 2D Average Pooling |
| mlr_pipeops_nn_avg_pool3d | 3D Average Pooling |
| mlr_pipeops_nn_batch_norm1d | 1D Batch Normalization |
| mlr_pipeops_nn_batch_norm2d | 2D Batch Normalization |
| mlr_pipeops_nn_batch_norm3d | 3D Batch Normalization |
| mlr_pipeops_nn_block | Block Repetition |
| mlr_pipeops_nn_celu | CELU Activation Function |
| mlr_pipeops_nn_conv1d | 1D Convolution |
| mlr_pipeops_nn_conv2d | 2D Convolution |
| mlr_pipeops_nn_conv3d | 3D Convolution |
| mlr_pipeops_nn_conv_transpose1d | Transpose 1D Convolution |
| mlr_pipeops_nn_conv_transpose2d | Transpose 2D Convolution |
| mlr_pipeops_nn_conv_transpose3d | Transpose 3D Convolution |
| mlr_pipeops_nn_dropout | Dropout |
| mlr_pipeops_nn_elu | ELU Activation Function |
| mlr_pipeops_nn_flatten | Flattens a Tensor |
| mlr_pipeops_nn_fn | Custom Function |
| mlr_pipeops_nn_ft_cls | CLS Token for FT-Transformer |
| mlr_pipeops_nn_ft_transformer_block | Single Transformer Block for the FT-Transformer |
| mlr_pipeops_nn_geglu | GeGLU Activation Function |
| mlr_pipeops_nn_gelu | GELU Activation Function |
| mlr_pipeops_nn_glu | GLU Activation Function |
| mlr_pipeops_nn_hardshrink | Hard Shrink Activation Function |
| mlr_pipeops_nn_hardsigmoid | Hard Sigmoid Activation Function |
| mlr_pipeops_nn_hardtanh | Hard Tanh Activation Function |
| mlr_pipeops_nn_head | Output Head |
| mlr_pipeops_nn_identity | Identity Layer |
| mlr_pipeops_nn_layer_norm | Layer Normalization |
| mlr_pipeops_nn_leaky_relu | Leaky ReLU Activation Function |
| mlr_pipeops_nn_linear | Linear Layer |
| mlr_pipeops_nn_log_sigmoid | Log Sigmoid Activation Function |
| mlr_pipeops_nn_max_pool1d | 1D Max Pooling |
| mlr_pipeops_nn_max_pool2d | 2D Max Pooling |
| mlr_pipeops_nn_max_pool3d | 3D Max Pooling |
| mlr_pipeops_nn_merge | Merge Operation |
| mlr_pipeops_nn_merge_cat | Merge by Concatenation |
| mlr_pipeops_nn_merge_prod | Merge by Product |
| mlr_pipeops_nn_merge_sum | Merge by Summation |
| mlr_pipeops_nn_prelu | PReLU Activation Function |
| mlr_pipeops_nn_reglu | ReGLU Activation Function |
| mlr_pipeops_nn_relu | ReLU Activation Function |
| mlr_pipeops_nn_relu6 | ReLU6 Activation Function |
| mlr_pipeops_nn_reshape | Reshape a Tensor |
| mlr_pipeops_nn_rrelu | RReLU Activation Function |
| mlr_pipeops_nn_selu | SELU Activation Function |
| mlr_pipeops_nn_sigmoid | Sigmoid Activation Function |
| mlr_pipeops_nn_softmax | Softmax |
| mlr_pipeops_nn_softplus | SoftPlus Activation Function |
| mlr_pipeops_nn_softshrink | Soft Shrink Activation Function |
| mlr_pipeops_nn_softsign | SoftSign Activation Function |
| mlr_pipeops_nn_squeeze | Squeeze a Tensor |
| mlr_pipeops_nn_tanh | Tanh Activation Function |
| mlr_pipeops_nn_tanhshrink | Tanh Shrink Activation Function |
| mlr_pipeops_nn_threshold | Treshold Activation Function |
| mlr_pipeops_nn_tokenizer_categ | Categorical Tokenizer |
| mlr_pipeops_nn_tokenizer_num | Numeric Tokenizer |
| mlr_pipeops_nn_unsqueeze | Unqueeze a Tensor |
| mlr_pipeops_preproc_torch | Base Class for Lazy Tensor Preprocessing |
| mlr_pipeops_torch | Base Class for Torch Module Constructor Wrappers |
| mlr_pipeops_torch_callbacks | Callback Configuration |
| mlr_pipeops_torch_ingress | Entrypoint to Torch Network |
| mlr_pipeops_torch_ingress_categ | Torch Entry Point for Categorical Features |
| mlr_pipeops_torch_ingress_ltnsr | Ingress for Lazy Tensor |
| mlr_pipeops_torch_ingress_num | Torch Entry Point for Numeric Features |
| mlr_pipeops_torch_loss | Loss Configuration |
| mlr_pipeops_torch_model | PipeOp Torch Model |
| mlr_pipeops_torch_model_classif | PipeOp Torch Classifier |
| mlr_pipeops_torch_model_regr | Torch Regression Model |
| mlr_pipeops_torch_optimizer | Optimizer Configuration |
| mlr_pipeops_trafo_adjust_brightness | Adjust Brightness Transformation |
| mlr_pipeops_trafo_adjust_gamma | Adjust Gamma Transformation |
| mlr_pipeops_trafo_adjust_hue | Adjust Hue Transformation |
| mlr_pipeops_trafo_adjust_saturation | Adjust Saturation Transformation |
| mlr_pipeops_trafo_grayscale | Grayscale Transformation |
| mlr_pipeops_trafo_normalize | Normalization Transformation |
| mlr_pipeops_trafo_pad | Padding Transformation |
| mlr_pipeops_trafo_resize | Resizing Transformation |
| mlr_pipeops_trafo_rgb_to_grayscale | RGB to Grayscale Transformation |
| mlr_tasks_cifar | CIFAR Classification Tasks |
| mlr_tasks_lazy_iris | Iris Classification Task |
| mlr_tasks_melanoma | Melanoma Image classification |
| mlr_tasks_mnist | MNIST Image classification |
| mlr_tasks_tiny_imagenet | Tiny ImageNet Classification Task |
| ModelDescriptor | Represent a Model with Meta-Info |
| model_descriptor_to_learner | Create a Torch Learner from a ModelDescriptor |
| model_descriptor_to_module | Create a nn_graph from ModelDescriptor |
| model_descriptor_union | Union of ModelDescriptors |
| nn | Create a Neural Network Layer |
| nn_ft_cls | CLS Token for FT-Transformer |
| nn_ft_transformer_block | Single Transformer Block for FT-Transformer |
| nn_geglu | GeGLU Module |
| nn_graph | Graph Network |
| nn_merge_cat | Concatenates multiple tensors |
| nn_merge_prod | Product of multiple tensors |
| nn_merge_sum | Sum of multiple tensors |
| nn_reglu | ReGLU Module |
| nn_reshape | Reshape |
| nn_squeeze | Squeeze |
| nn_tokenizer_categ | Categorical Tokenizer |
| nn_tokenizer_num | Numeric Tokenizer |
| nn_unsqueeze | Unsqueeze |
| output_dim_for | Network Output Dimension |
| pipeop_preproc_torch | Create Torch Preprocessing PipeOps |
| PipeOpPreprocTorchTrafoNop | No Transformation |
| PipeOpPreprocTorchTrafoReshape | Reshaping Transformation |
| replace_head | Replace the head of a network Replaces the head of the... |
| Select | Selector Functions for Character Vectors |
| task_dataset | Create a Dataset from a Task |
| t_clbk | Sugar Function for Torch Callback |
| t_loss | Loss Function Quick Access |
| t_opt | Optimizers Quick Access |
| torch_callback | Create a Callback Descriptor |
| TorchCallback | Torch Callback |
| TorchDescriptor | Base Class for Torch Descriptors |
| TorchIngressToken | Torch Ingress Token |
| TorchLoss | Torch Loss |
| TorchOptimizer | Torch Optimizer |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.