Nothing
# PROPHET BOOST ----
#' General Interface for Boosted PROPHET Time Series Models
#'
#' `prophet_boost()` is a way to generate a _specification_ of a Boosted PROPHET model
#' before fitting and allows the model to be created using
#' different packages. Currently the only package is `prophet`.
#'
#' @inheritParams arima_boost
#' @inheritParams prophet_reg
#'
#'
#' @details
#' The data given to the function are not saved and are only used
#' to determine the _mode_ of the model. For `prophet_boost()`, the
#' mode will always be "regression".
#'
#' The model can be created using the `fit()` function using the
#' following _engines_:
#'
#' - "prophet_xgboost" (default) - Connects to [prophet::prophet()] and [xgboost::xgb.train()]
#'
#' __Main Arguments__
#'
#' The main arguments (tuning parameters) for the __PROPHET__ model are:
#'
#' - `growth`: String 'linear' or 'logistic' to specify a linear or logistic trend.
#' - `changepoint_num`: Number of potential changepoints to include for modeling trend.
#' - `changepoint_range`: Range changepoints that adjusts how close to the end
#' the last changepoint can be located.
#' - `season`: 'additive' (default) or 'multiplicative'.
#' - `prior_scale_changepoints`: Parameter modulating the flexibility of the
#' automatic changepoint selection. Large values will allow many changepoints,
#' small values will allow few changepoints.
#' - `prior_scale_seasonality`: Parameter modulating the strength of the
#' seasonality model. Larger values allow the model to fit larger seasonal
#' fluctuations, smaller values dampen the seasonality.
#' - `prior_scale_holidays`: Parameter modulating the strength of the holiday components model,
#' unless overridden in the holidays input.
#' - `logistic_cap`: When growth is logistic, the upper-bound for "saturation".
#' - `logistic_floor`: When growth is logistic, the lower-bound for "saturation".
#'
#' The main arguments (tuning parameters) for the model __XGBoost model__ are:
#'
#' - `mtry`: The number of predictors that will be
#' randomly sampled at each split when creating the tree models.
#' - `trees`: The number of trees contained in the ensemble.
#' - `min_n`: The minimum number of data points in a node
#' that are required for the node to be split further.
#' - `tree_depth`: The maximum depth of the tree (i.e. number of
#' splits).
#' - `learn_rate`: The rate at which the boosting algorithm adapts
#' from iteration-to-iteration.
#' - `loss_reduction`: The reduction in the loss function required
#' to split further.
#' - `sample_size`: The amount of data exposed to the fitting routine.
#' - `stop_iter`: The number of iterations without improvement before
#' stopping.
#'
#' These arguments are converted to their specific names at the
#' time that the model is fit.
#'
#' Other options and argument can be
#' set using `set_engine()` (See Engine Details below).
#'
#' If parameters need to be modified, `update()` can be used
#' in lieu of recreating the object from scratch.
#'
#'
#' @section Engine Details:
#'
#' The standardized parameter names in `modeltime` can be mapped to their original
#' names in each engine:
#'
#' Model 1: PROPHET:
#'
#' ```{r echo = FALSE}
#' tibble::tribble(
#' ~ "modeltime", ~ "prophet",
#' "growth", "growth ('linear')",
#' "changepoint_num", "n.changepoints (25)",
#' "changepoint_range", "changepoints.range (0.8)",
#' "seasonality_yearly", "yearly.seasonality ('auto')",
#' "seasonality_weekly", "weekly.seasonality ('auto')",
#' "seasonality_daily", "daily.seasonality ('auto')",
#' "season", "seasonality.mode ('additive')",
#' "prior_scale_changepoints", "changepoint.prior.scale (0.05)",
#' "prior_scale_seasonality", "seasonality.prior.scale (10)",
#' "prior_scale_holidays", "holidays.prior.scale (10)",
#' "logistic_cap", "df$cap (NULL)",
#' "logistic_floor", "df$floor (NULL)"
#' ) %>% knitr::kable()
#' ```
#'
#' Model 2: XGBoost:
#'
#' ```{r echo = FALSE}
#' # parsnip::convert_args("arima_boost")
#' tibble::tribble(
#' ~ "modeltime", ~ "xgboost::xgb.train",
#' "tree_depth", "max_depth (6)",
#' "trees", "nrounds (15)",
#' "learn_rate", "eta (0.3)",
#' "mtry", "colsample_bynode (1)",
#' "min_n", "min_child_weight (1)",
#' "loss_reduction", "gamma (0)",
#' "sample_size", "subsample (1)",
#' "stop_iter", "early_stop"
#' ) %>% knitr::kable()
#' ```
#'
#'
#' Other options can be set using `set_engine()`.
#'
#'
#' __prophet_xgboost__
#'
#'
#' Model 1: PROPHET (`prophet::prophet`):
#' ```{r echo = FALSE}
#' str(prophet::prophet)
#' ```
#'
#' Parameter Notes:
#' - `df`: This is supplied via the parsnip / modeltime `fit()` interface
#' (so don't provide this manually). See Fit Details (below).
#' - `holidays`: A data.frame of holidays can be supplied via `set_engine()`
#' - `uncertainty.samples`: The default is set to 0 because the prophet
#' uncertainty intervals are not used as part of the Modeltime Workflow.
#' You can override this setting if you plan to use prophet's uncertainty tools.
#'
#' Logistic Growth and Saturation Levels:
#' - For `growth = "logistic"`, simply add numeric values for `logistic_cap` and / or
#' `logistic_floor`. There is _no need_ to add additional columns
#' for "cap" and "floor" to your data frame.
#'
#' Limitations:
#' - `prophet::add_seasonality()` is not currently implemented. It's used to
#' specify non-standard seasonalities using fourier series. An alternative is to use
#' `step_fourier()` and supply custom seasonalities as Extra Regressors.
#'
#' Model 2: XGBoost (`xgboost::xgb.train`):
#' ```{r echo = FALSE}
#' str(xgboost::xgb.train)
#' ```
#'
#' Parameter Notes:
#' - XGBoost uses a `params = list()` to capture.
#' Parsnip / Modeltime automatically sends any args provided as `...` inside of `set_engine()` to
#' the `params = list(...)`.
#'
#' @section Fit Details:
#'
#' __Date and Date-Time Variable__
#'
#' It's a requirement to have a date or date-time variable as a predictor.
#' The `fit()` interface accepts date and date-time features and handles them internally.
#'
#' - `fit(y ~ date)`
#'
#'
#' __Univariate (No Extra Regressors):__
#'
#' For univariate analysis, you must include a date or date-time feature. Simply use:
#'
#' - Formula Interface (recommended): `fit(y ~ date)` will ignore xreg's.
#' - XY Interface: `fit_xy(x = data[,"date"], y = data$y)` will ignore xreg's.
#'
#' __Multivariate (Extra Regressors)__
#'
#' Extra Regressors parameter is populated using the `fit()` or `fit_xy()` function:
#'
#' - Only `factor`, `ordered factor`, and `numeric` data will be used as xregs.
#' - Date and Date-time variables are not used as xregs
#' - `character` data should be converted to factor.
#'
#' _Xreg Example:_ Suppose you have 3 features:
#'
#' 1. `y` (target)
#' 2. `date` (time stamp),
#' 3. `month.lbl` (labeled month as a ordered factor).
#'
#' The `month.lbl` is an exogenous regressor that can be passed to the `arima_reg()` using
#' `fit()`:
#'
#' - `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.
#' - `fit_xy(data[,c("date", "month.lbl")], y = data$y)` will pass x, where x is a data frame containing `month.lbl`
#' and the `date` feature. Only `month.lbl` will be used as an exogenous regressor.
#'
#' Note that date or date-time class values are excluded from `xreg`.
#'
#'
#'
#' @seealso `fit.model_spec()`, `set_engine()`
#'
#' @examples
#' \donttest{
#' library(dplyr)
#' library(lubridate)
#' library(parsnip)
#' library(rsample)
#' library(timetk)
#'
#' # Data
#' m750 <- m4_monthly %>% filter(id == "M750")
#' m750
#'
#' # Split Data 80/20
#' splits <- initial_time_split(m750, prop = 0.8)
#'
#' # ---- PROPHET ----
#'
#' # Model Spec
#' model_spec <- prophet_boost(
#' learn_rate = 0.1
#' ) %>%
#' set_engine("prophet_xgboost")
#'
#' # Fit Spec
#'
#' model_fit <- model_spec %>%
#' fit(log(value) ~ date + as.numeric(date) + month(date, label = TRUE),
#' data = training(splits))
#' model_fit
#' }
#'
#'
#'
#' @export
prophet_boost <- function(mode = "regression",
growth = NULL, changepoint_num = NULL, changepoint_range = NULL,
seasonality_yearly = NULL, seasonality_weekly = NULL, seasonality_daily = NULL,
season = NULL,
prior_scale_changepoints = NULL, prior_scale_seasonality = NULL,
prior_scale_holidays = NULL,
logistic_cap = NULL, logistic_floor = NULL,
mtry = NULL, trees = NULL, min_n = NULL,
tree_depth = NULL, learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL, stop_iter = NULL) {
args <- list(
# Prophet
growth = rlang::enquo(growth),
changepoint_num = rlang::enquo(changepoint_num),
changepoint_range = rlang::enquo(changepoint_range),
seasonality_yearly = rlang::enquo(seasonality_yearly),
seasonality_weekly = rlang::enquo(seasonality_weekly),
seasonality_daily = rlang::enquo(seasonality_daily),
season = rlang::enquo(season),
prior_scale_changepoints = rlang::enquo(prior_scale_changepoints),
prior_scale_seasonality = rlang::enquo(prior_scale_seasonality),
prior_scale_holidays = rlang::enquo(prior_scale_holidays),
logistic_cap = rlang::enquo(logistic_cap),
logistic_floor = rlang::enquo(logistic_floor),
# XGBoost
mtry = rlang::enquo(mtry),
trees = rlang::enquo(trees),
min_n = rlang::enquo(min_n),
tree_depth = rlang::enquo(tree_depth),
learn_rate = rlang::enquo(learn_rate),
loss_reduction = rlang::enquo(loss_reduction),
sample_size = rlang::enquo(sample_size),
stop_iter = rlang::enquo(stop_iter)
)
parsnip::new_model_spec(
"prophet_boost",
args = args,
eng_args = NULL,
mode = mode,
method = NULL,
engine = NULL
)
}
#' @export
print.prophet_boost <- function(x, ...) {
cat("PROPHET Regression Model Specification (", x$mode, ")\n\n", sep = "")
parsnip::model_printer(x, ...)
if(!is.null(x$method$fit$args)) {
cat("Model fit template:\n")
print(parsnip::show_call(x))
}
invisible(x)
}
#' @export
#' @importFrom stats update
update.prophet_boost <- function(object, parameters = NULL,
growth = NULL, changepoint_num = NULL, changepoint_range = NULL,
seasonality_yearly = NULL, seasonality_weekly = NULL, seasonality_daily = NULL,
season = NULL,
prior_scale_changepoints = NULL, prior_scale_seasonality = NULL,
prior_scale_holidays = NULL,
logistic_cap = NULL, logistic_floor = NULL,
mtry = NULL, trees = NULL, min_n = NULL,
tree_depth = NULL, learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL, stop_iter = NULL,
fresh = FALSE, ...) {
eng_args <- parsnip::update_engine_parameters(object$eng_args, fresh, ...)
if (!is.null(parameters)) {
parameters <- parsnip::check_final_param(parameters)
}
args <- list(
# Prophet
growth = rlang::enquo(growth),
changepoint_num = rlang::enquo(changepoint_num),
changepoint_range = rlang::enquo(changepoint_range),
seasonality_yearly = rlang::enquo(seasonality_yearly),
seasonality_weekly = rlang::enquo(seasonality_weekly),
seasonality_daily = rlang::enquo(seasonality_daily),
season = rlang::enquo(season),
prior_scale_changepoints = rlang::enquo(prior_scale_changepoints),
prior_scale_seasonality = rlang::enquo(prior_scale_seasonality),
prior_scale_holidays = rlang::enquo(prior_scale_holidays),
logistic_cap = rlang::enquo(logistic_cap),
logistic_floor = rlang::enquo(logistic_floor),
# XGBoost
mtry = rlang::enquo(mtry),
trees = rlang::enquo(trees),
min_n = rlang::enquo(min_n),
tree_depth = rlang::enquo(tree_depth),
learn_rate = rlang::enquo(learn_rate),
loss_reduction = rlang::enquo(loss_reduction),
sample_size = rlang::enquo(sample_size),
stop_iter = rlang::enquo(stop_iter)
)
args <- parsnip::update_main_parameters(args, parameters)
if (fresh) {
object$args <- args
object$eng_args <- eng_args
} else {
null_args <- purrr::map_lgl(args, parsnip::null_value)
if (any(null_args))
args <- args[!null_args]
if (length(args) > 0)
object$args[names(args)] <- args
if (length(eng_args) > 0)
object$eng_args[names(eng_args)] <- eng_args
}
parsnip::new_model_spec(
"prophet_boost",
args = object$args,
eng_args = object$eng_args,
mode = object$mode,
method = NULL,
engine = object$engine
)
}
#' @export
#' @importFrom parsnip translate
translate.prophet_boost <- function(x, engine = x$engine, ...) {
if (is.null(engine)) {
message("Used `engine = 'prophet_xgboost'` for translation.")
engine <- "prophet_xgboost"
}
x <- parsnip::translate.default(x, engine, ...)
x
}
# FIT - prophet -----
#' Low-Level PROPHET function for translating modeltime to Boosted PROPHET
#'
#' @inheritParams prophet::prophet
#' @inheritParams prophet_boost
#' @inheritParams parsnip::xgb_train
#' @param x A dataframe of xreg (exogenous regressors)
#' @param y A numeric vector of values to fit
#' @param max_depth An integer for the maximum depth of the tree.
#' @param nrounds An integer for the number of boosting iterations.
#' @param eta A numeric value between zero and one to control the learning rate.
#' @param colsample_bytree Subsampling proportion of columns.
#' @param min_child_weight A numeric value for the minimum sum of instance
#' weights needed in a child to continue to split.
#' @param gamma A number for the minimum loss reduction required to make a
#' further partition on a leaf node of the tree
#' @param subsample Subsampling proportion of rows.
#' @param validation A positive number. If on `[0, 1)` the value, `validation`
#' is a random proportion of data in `x` and `y` that are used for performance
#' assessment and potential early stopping. If 1 or greater, it is the _number_
#' of training set samples use for these purposes.
#' @param early_stop An integer or `NULL`. If not `NULL`, it is the number of
#' training iterations without improvement before stopping. If `validation` is
#' used, performance is base on the validation set; otherwise the training set
#' is used.
#' @param ... Additional arguments passed to `xgboost::xgb.train`
#'
#' @keywords internal
#' @export
prophet_xgboost_fit_impl <- function(x, y,
df = NULL,
growth = "linear",
changepoints = NULL,
n.changepoints = 25,
changepoint.range = 0.8,
yearly.seasonality = "auto",
weekly.seasonality = "auto",
daily.seasonality = "auto",
holidays = NULL,
seasonality.mode = "additive",
seasonality.prior.scale = 10,
holidays.prior.scale = 10,
changepoint.prior.scale = 0.05,
logistic_cap = NULL,
logistic_floor = NULL,
mcmc.samples = 0,
interval.width = 0.8,
uncertainty.samples = 1000,
fit = TRUE,
# xgboost params
max_depth = 6,
nrounds = 15,
eta = 0.3,
colsample_bytree = NULL,
colsample_bynode = NULL,
min_child_weight = 1,
gamma = 0,
subsample = 1,
validation = 0,
early_stop = NULL,
...) {
# X & Y
# Expect outcomes = vector
# Expect predictor = data.frame
outcome <- y
predictor <- x
growth <- tolower(growth)
if (!growth[1] %in% c("linear", "logistic")) {
message("growth must be 'linear' or 'logistic'. Defaulting to 'linear'.")
growth <- 'linear'
}
if (!seasonality.mode[1] %in% c("additive", "multiplicative")) {
message("seasonality.mode must be 'additive' or 'multiplicative'. Defaulting to 'additive'.")
seasonality.mode <- 'additive'
}
if (growth == "logistic") {
if (all(c(is.null(logistic_cap), is.null(logistic_floor)))) {
cli::cli_abort("Capacities must be supplied for `growth = 'logistic'`. Try specifying at least one of 'logistic_cap' or 'logistic_floor'")
}
}
# INDEX & PERIOD
# Determine Period, Index Col, and Index
index_tbl <- parse_index_from_data(predictor)
# period <- parse_period_from_index(index_tbl, period)
idx_col <- names(index_tbl)
idx <- timetk::tk_index(index_tbl)
# XREGS
# Clean names, get xreg recipe, process predictors
xreg_recipe <- create_xreg_recipe(predictor, prepare = TRUE)
xreg_tbl <- juice_xreg_recipe(xreg_recipe, format = "tbl")
# FIT
# Construct Data Frame
df <- tibble::tibble(
y = outcome,
ds = idx
)
# Add logistic cap / floor
if (growth == "logistic") {
df$cap <- logistic_cap
df$floor <- logistic_floor
}
# Construct model
# Fit model
fit_prophet <- prophet::prophet(
df = df,
growth = growth,
changepoints = changepoints,
n.changepoints = n.changepoints,
changepoint.range = changepoint.range,
yearly.seasonality = yearly.seasonality,
weekly.seasonality = weekly.seasonality,
daily.seasonality = daily.seasonality,
holidays = holidays,
seasonality.mode = seasonality.mode,
seasonality.prior.scale = seasonality.prior.scale,
holidays.prior.scale = holidays.prior.scale,
changepoint.prior.scale = changepoint.prior.scale,
mcmc.samples = mcmc.samples,
interval.width = interval.width,
uncertainty.samples = uncertainty.samples,
fit = fit
)
# In-sample Predictions
prophet_fitted <- stats::predict(fit_prophet, df) %>% dplyr::pull(yhat)
prophet_residuals <- outcome - prophet_fitted
# Add regressors
# xgboost
if (!is.null(xreg_tbl)) {
fit_xgboost <- xgboost_impl(
x = xreg_tbl,
y = prophet_residuals,
max_depth = max_depth,
nrounds = nrounds,
eta = eta,
colsample_bytree = colsample_bytree,
colsample_bynode = colsample_bynode,
min_child_weight = min_child_weight,
gamma = gamma,
subsample = subsample,
validation = validation,
early_stop = early_stop,
...
)
xgboost_fitted <- xgboost_predict(fit_xgboost, newdata = xreg_tbl)
} else {
fit_xgboost <- NULL
xgboost_fitted <- rep(0, length(prophet_residuals))
}
# RETURN A NEW MODELTIME BRIDGE
# Class - Add a class for the model
class <- "prophet_xgboost_fit_impl"
# Models - Insert model_1 and model_2 into a list
models <- list(
model_1 = fit_prophet,
model_2 = fit_xgboost
)
# Data - Start with index tbl and add .actual, .fitted, and .residuals columns
data <- index_tbl %>%
dplyr::mutate(
.actual = y,
.fitted = prophet_fitted + xgboost_fitted,
.residuals = .actual - .fitted
)
# Extras - Pass on transformation recipe
extras <- list(
xreg_recipe = xreg_recipe,
logistic_params = list(
growth = growth,
logistic_cap = logistic_cap,
logistic_floor = logistic_floor
)
)
# Model Description - Gets printed to describe the high-level model structure
desc <- paste0("PROPHET",
ifelse(is.null(fit_xgboost), "", " w/ XGBoost Errors"))
# Create new model
new_modeltime_bridge(
class = class,
models = models,
data = data,
extras = extras,
desc = desc
)
}
#' @export
print.prophet_xgboost_fit_impl <- function(x, ...) {
prophet_model <- x$models$model_1
logistic_params <- x$extras$logistic_params
if (is.null(logistic_params$logistic_cap)) {
cap <- "NULL"
} else {
cap <- logistic_params$logistic_cap
}
if (is.null(logistic_params$logistic_floor)) {
floor <- "NULL"
} else {
floor <- logistic_params$logistic_floor
}
msg_1 <- stringr::str_glue(
"
- growth: '{prophet_model$growth}'
- n.changepoints: {prophet_model$n.changepoints}
- changepoint.range: {prophet_model$changepoint.range}
- yearly.seasonality: '{prophet_model$yearly.seasonality}'
- weekly.seasonality: '{prophet_model$weekly.seasonality}'
- daily.seasonality: '{prophet_model$daily.seasonality}'
- seasonality.mode: '{prophet_model$seasonality.mode}'
- changepoint.prior.scale: {prophet_model$changepoint.prior.scale}
- seasonality.prior.scale: {prophet_model$seasonality.prior.scale}
- holidays.prior.scale: {prophet_model$holidays.prior.scale}
- logistic_cap: {cap}
- logistic_floor: {floor}
")
if (!is.null(x$desc)) cat(paste0(x$desc,"\n"))
cat("---\n")
cat("Model 1: PROPHET\n")
print(msg_1)
cat("\n---\n")
cat("Model 2: XGBoost Errors\n\n")
print(x$models$model_2$call)
invisible(x)
invisible(x)
}
# PREDICT ----
#' @export
predict.prophet_xgboost_fit_impl <- function(object, new_data, ...) {
prophet_xgboost_predict_impl(object, new_data, ...)
}
#' Bridge prediction function for Boosted PROPHET models
#'
#' @inheritParams parsnip::predict.model_fit
#' @param ... Additional arguments passed to `prophet::predict()`
#'
#' @keywords internal
#' @export
prophet_xgboost_predict_impl <- function(object, new_data, ...) {
# PREPARE INPUTS
prophet_model <- object$models$model_1
xgboost_model <- object$models$model_2
idx_future <- new_data %>% timetk::tk_index()
xreg_recipe <- object$extras$xreg_recipe
logistic_params <- object$extras$logistic_params
# Construct Future Frame
df <- tibble::tibble(
ds = idx_future
)
# Logistic Growth
if (logistic_params$growth == "logistic") {
df$cap <- logistic_params$logistic_cap
df$floor <- logistic_params$logistic_floor
}
# PREDICTIONS
preds_prophet_df <- stats::predict(prophet_model, df)
# Return predictions as numeric vector
preds_prophet <- preds_prophet_df %>% dplyr::pull(yhat)
# XREG
xreg_tbl <- bake_xreg_recipe(xreg_recipe, new_data, format = "tbl")
# xgboost
if (!is.null(xreg_tbl)) {
preds_xgboost <- xgboost_predict(xgboost_model, newdata = xreg_tbl, ...)
} else {
preds_xgboost <- rep(0, nrow(df))
}
# Return predictions as numeric vector
preds <- preds_prophet + preds_xgboost
return(preds)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.