Defines functions nLogLike

Documented in nLogLike

#' Negative log-likelihood function
#' @param wpar Vector of working parameters.
#' @param nbStates Number of states of the HMM.
#' @param bounds Matrix with 2 columns and as many rows as there are elements in \code{wpar}. Each row
#' contains the lower and upper bound for the correponding parameter.
#' @param parSize Vector of two values: number of parameters of the step length distribution,
#' number of parameters of the turning angle distribution.
#' @param data An object \code{moveData}.
#' @param stepDist Name of the distribution of the step lengths (as a character string).
#' Supported distributions are: gamma, weibull, lnorm, exp. Default: gamma.
#' @param angleDist Name of the distribution of the turning angles (as a character string).
#' Supported distributions are: vm, wrpcauchy. Set to \code{"none"} if the angle distribution should
#' not be estimated. Default: vm.
#' @param angleMean Vector of means of turning angles if not estimated (one for each state).
#' Default: \code{NULL} (the angle mean is estimated).
#' @param zeroInflation \code{TRUE} if the step length distribution is inflated in zero.
#' Default: \code{FALSE}. If \code{TRUE}, initial values for the zero-mass parameters should be
#' included in \code{stepPar0}.
#' @param stationary \code{FALSE} if there are covariates. If \code{TRUE}, the initial distribution is considered
#' equal to the stationary distribution. Default: \code{FALSE}.
#' @param knownStates Vector of values of the state process which are known prior to fitting the
#' model (if any). Default: NULL (states are not known). This should be a vector with length the number
#' of rows of 'data'; each element should either be an integer (the value of the known states) or NA if
#' the state is not known.
#' @return The negative log-likelihood of the parameters given the data.
#' @examples
#' \dontrun{
#' # data is a moveData object (as returned by prepData), automatically loaded with the package
#' data <- example$data
#' simPar <- example$simPar
#' par0 <- example$par0
#' estAngleMean <- is.null(simPar$angleMean)
#' bounds <- parDef(simPar$stepDist,simPar$angleDist,simPar$nbStates,
#'                  estAngleMean,simPar$zeroInflation)$bounds
#' parSize <- parDef(simPar$stepDist,simPar$angleDist,simPar$nbStates,
#'                   estAngleMean,simPar$zeroInflation)$parSize
#' par <- c(par0$stepPar0,par0$anglePar0)
#' wpar <- n2w(par,bounds,par0$beta0,par0$delta0,simPar$nbStates,FALSE)
#' l <- nLogLike(wpar=wpar,nbStates=simPar$nbStates,bounds=bounds,parSize=parSize,data=data,
#'              stepDist=simPar$stepDist,angleDist=simPar$angleDist,angleMean=simPar$angleMean,
#'              zeroInflation=simPar$zeroInflation)
#' }
#' @export

nLogLike <- function(wpar,nbStates,bounds,parSize,data,stepDist=c("gamma","weibull","lnorm","exp"),
    # check arguments
    stepDist <- match.arg(stepDist)
    angleDist <- match.arg(angleDist)
        stop("nbStates must be at least 1.")

    covsCol <- which(!names(data)%in%c("ID","x","y","step","angle"))
    nbCovs <- length(covsCol)-1 # substract intercept column

    if(length(which(names(data)=="(Intercept)"))==0) { # no intercept column, if not called from fitHMM
        data <- cbind(data[,-covsCol],Intercept=rep(1,nrow(data)),data[,covsCol])
        covsCol <- which(!names(data)%in%c("ID","x","y","step","angle"))
        nbCovs <- length(covsCol)-1 # substract intercept column

    if(!stationary & (length(wpar)!=sum(parSize)*nbStates+nbStates*(nbStates-1)*(nbCovs+1)+nbStates-1))
        stop("Wrong number of parameters in wpar.")
    if(stationary & (length(wpar)!=sum(parSize)*nbStates+nbStates*(nbStates-1)*(nbCovs+1)))
        stop("Wrong number of parameters in wpar.")
        stop("The data input is empty.")

        stop("Missing field(s) in data.")

    estAngleMean <- (is.null(angleMean) & angleDist!="none")

    # convert the parameters back to their natural scale
    par <- w2n(wpar,bounds,parSize,nbStates,nbCovs,estAngleMean,stationary)

    if(!is.null(angleMean) & angleDist!="none") # if the turning angles' mean is not estimated
        par$anglePar <- rbind(angleMean,par$anglePar)

    nbObs <- length(data$step)
    covs <- data[,covsCol]

    nbAnimals <- length(unique(data$ID))

    # aInd = list of indices of first observation for each animal
    aInd <- NULL
    for(i in 1:nbAnimals)
        aInd <- c(aInd,which(data$ID==unique(data$ID)[i])[1])

    # easier to deal with in C++ function
        knownStates <- -1
        knownStates[which(is.na(knownStates))] <- 0

    # NULL arguments don't suit C++
        par$anglePar <- matrix(NA)
        par$delta <- c(NA)
    if(nbStates==1) {
        par$beta <- matrix(NA)
        par$delta <- c(NA)
        par$stepPar <- as.matrix(par$stepPar)
        par$anglePar <- as.matrix(par$anglePar)

    nllk <- nLogLike_rcpp(nbStates,par$beta,as.matrix(covs),data,stepDist,angleDist,par$stepPar,


Try the moveHMM package in your browser

Any scripts or data that you put into this service are public.

moveHMM documentation built on June 7, 2018, 5:05 p.m.