R/prepData.R

Defines functions prepData

Documented in prepData

#' Preprocessing of the tracking data
#'
#' @param trackData A dataframe of the tracking data, including at least coordinates
#' (either longitude/latitude values or cartesian coordinates), and optionnaly a field \code{ID}
#' (identifiers for the observed individuals). Additionnal fields are considered as covariates.
#' Note that, if the names of the coordinates are not "x" and "y", the \code{coordNames} argument
#' should specified.
#' @param type \code{'LL'} if longitude/latitude provided (default), \code{'UTM'} if easting/northing.
#' @param coordNames Names of the columns of coordinates in the data frame. Default: \code{c("x","y")}.
#' @param LLangle Logical. If TRUE, the turning angle is calculated with \code{geosphere::bearing}
#' (default), else calculated with \code{atan2}.
#'
#' @return An object \code{moveData}, i.e. a dataframe of:
#' \item{ID}{The ID(s) of the observed animal(s)}
#' \item{step}{The step lengths - in kilometers if longitude/latitude provided, and in the metrics of
#' the data otherwise}
#' \item{angle}{The turning angles (if any) - in radians}
#' \item{x}{Either Easting or longitude (or e.g. depth for 1D data)}
#' \item{y}{Either Northing or latitude (all zero if 1D data)}
#' \item{...}{Covariates (if any)}
#'
#' @examples
#' coord1 <- c(1,2,3,4,5,6,7,8,9,10)
#' coord2 <- c(1,1,1,2,2,2,1,1,1,2)
#' trackData <- data.frame(coord1=coord1,coord2=coord2)
#' d <- prepData(trackData,type='UTM',coordNames=c("coord1","coord2"))
#'
#' @export
#' @importFrom sp spDistsN1

prepData <- function(trackData, type=c('LL','UTM'), coordNames=c("x","y"), LLangle=NULL)
{
    # check arguments
    type <- match.arg(type)
    if(length(which(coordNames %in% names(trackData)))<2)
        stop("Check the columns names of your coordinates.")

    if(!is.null(trackData$ID))
        ID <- as.character(trackData$ID) # homogenization of numeric and string IDs
    else
        ID <- rep("Animal1",nrow(trackData)) # default ID if none provided

    if(length(which(is.na(ID)))>0)
        stop("Missing IDs")

    if(!is.null(LLangle) & !is.logical(LLangle))
        stop("'LLangle' must be logical.")
    if(is.null(LLangle))
        LLangle <- type=='LL' # TRUE if type=='LL', FALSE otherwise

    data <- data.frame(ID=character(),
                       step=numeric(),
                       angle=numeric())

    # remove tracks with less than two observations
    for(zoo in unique(ID)) {
        if(length(which(ID==zoo))<2) {
            trackData <- trackData[-which(ID==zoo),]
            ID <- ID[-which(ID==zoo)]
            warning(paste("Track",zoo,"only contains one observation,",
                          "and will be removed from the data."))
        }
    }

    x <- trackData[,coordNames[1]]
    y <- trackData[,coordNames[2]]

    nbAnimals <- length(unique(ID))

    # check that each animal's observations are contiguous
    for(i in 1:nbAnimals) {
        ind <- which(ID==unique(ID)[i])
        if(length(ind)!=length(ind[1]:ind[length(ind)]))
            stop("Each animal's obervations must be contiguous.")
    }

    for(zoo in 1:nbAnimals) {
        nbObs <- length(which(ID==unique(ID)[zoo])) # number of observations for animal zoo

        step <- rep(NA,nbObs)
        angle <- rep(NA,nbObs)
        i1 <- which(ID==unique(ID)[zoo])[1] # index of 1st obs for animal zoo
        i2 <- i1+nbObs-1 # index of last obs for animal zoo

        for(i in (i1+1):(i2-1)) {
            # for each observation, compute step and angle

            if(!is.na(x[i-1]) & !is.na(x[i]) & !is.na(y[i-1]) & !is.na(y[i])) {
                # step length
                step[i-i1] <- spDistsN1(pts = matrix(c(x[i-1],y[i-1]),ncol=2),
                                        pt = c(x[i],y[i]),
                                        longlat = (type=='LL')) # TRUE if 'LL', FALSE otherwise
            }

            if(!is.na(x[i-1]) & !is.na(x[i]) & !is.na(x[i+1]) & !is.na(y[i-1]) & !is.na(y[i]) & !is.na(y[i+1])) {
                # turning angle
                angle[i-i1+1] <- turnAngle(c(x[i-1],y[i-1]),
                                           c(x[i],y[i]),
                                           c(x[i+1],y[i+1]),
                                           LLangle=LLangle)
            }
        }

        # compute last step (last angle = NA)
        if(!is.na(x[i2-1]) & !is.na(x[i2]) & !is.na(y[i2-1]) & !is.na(y[i2])) {
            step[i2-i1] <- spDistsN1(pts = matrix(c(x[i2-1],y[i2-1]),ncol=2),
                                     pt = c(x[i2],y[i2]),
                                     longlat = (type=='LL')) # TRUE if 'LL', FALSE otherwise
        }

        # d = data for one individual
        d <- data.frame(ID=rep(unique(ID)[zoo],nbObs),
                        step=step,
                        angle=angle)

        # append individual data to output
        data <- rbind(data,d)
    }

    # identify covariate columns
    covsCol <- which(names(trackData)!="ID" & names(trackData)!=coordNames[1] & names(trackData)!=coordNames[2])
    if(length(covsCol)>0) {
        covs <- data.frame(trackData[,covsCol]) # to prevent error if nbCovs==1
        colnames(covs) <- names(trackData)[covsCol]

        # account for missing values of the covariates
        if(length(which(is.na(covs)))>0)
            warning(paste("There are",length(which(is.na(covs))),
                          "missing covariate values.",
                          "Each will be replaced by the closest available value."))
        for(i in 1:length(covsCol)) {
            if(length(which(is.na(covs[,i])))>0) { # if covariate i has missing values
                if(is.na(covs[1,i])) { # if the first value of the covariate is missing
                    k <- 1
                    while(is.na(covs[k,i])) k <- k+1
                    for(j in k:2) covs[j-1,i] <- covs[j,i]
                }
                for(j in 2:nrow(trackData)) {
                    if(is.na(covs[j,i]))
                        covs[j,i] <- covs[j-1,i]
                }
            }
        }
    }
    else covs <- NULL

    data <- cbind(data,x=x,y=y)
    if(!is.null(covs))
        data <- cbind(data,covs)
    return(moveData(data))
}

Try the moveHMM package in your browser

Any scripts or data that you put into this service are public.

moveHMM documentation built on June 7, 2018, 5:05 p.m.