Rn_Gauss-class | R Documentation |
\exp(-\vec{x}\cdot\vec{x})
on R^n
Implementation of the function
f \colon R^n \to (0,\infty),\, \vec{x} \mapsto f(\vec{x}) = \exp(-\vec{x}\cdot\vec{x}) = \exp(-\sum_{i=1}^n x_i^2),
where n \in \{1,2,3,\ldots\}
is the dimension of the integration domain R^n = \times_{i=1}^n R
.
In this case the integral is know to be
\int_{R^n} f(\vec{x}) d\vec{x} = \pi^{n/2}.
The instance needs to be created with one parameter representing n
.
dim
An integer that captures the dimension
Klaus Herrmann
n <- as.integer(3)
f <- new("Rn_Gauss",dim=n)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.