# unitBall_polynomial-class: An S4 class to represent the function prod_{i=1}^n x_i^{a_i}... In multIntTestFunc: Provides Test Functions for Multivariate Integration

## Description

Implementation of the function

f \colon B_n \to R,\, \vec{x} \mapsto f(\vec{x}) = ∏_{i=1}^n x_i^{a_i},

where n \in \{1,2,3,…\} is the dimension of the integration domain B_n = \{\vec{x}\in R^n : \Vert \vec{x} \Vert_2 ≤q 1\} and a_i \in \{0,1,2,3,…\}, i=1,…,n, are parameters. If at least one of the coefficients a_i is odd, i.e., a_i\in\{1,3,5,7,…\} for at leas one i=1,…,n, the integral is zero, otherwise the integral is known to be

\int_{B_n} f(\vec{x}) d\vec{x} = 2\frac{∏_{i=1}^nΓ(b_i)}{Γ(∑_{i=1}^n b_i)(n+∑_{i=1}^n a_i)},

where b_i = (a_i+1)/2.

## Details

The instance needs to be created with two parameters representing the dimension n and a n-dimensional vector of integers (including 0) representing the exponents.

## Slots

dim

An integer that captures the dimension

expo

An vector that captures the exponents

## Examples

 1 2 n <- as.integer(3) f <- new("unitBall_polynomial",dim=n,expo=c(1,2,3)) 

multIntTestFunc documentation built on Oct. 5, 2021, 5:08 p.m.