unitCube_max-class | R Documentation |
\max(x_1,\ldots,x_n)
on [0,1]^n
Implementation of the function
f \colon [0,1]^n \to [0,n],\, \vec{x} \mapsto f(\vec{x}) = \max(x_1,\ldots,x_n)
,
where n \in \{1,2,3,\ldots\}
is the dimension of the integration domain C_n = [0,1]^n
.
The integral is known to be
\int_{C_n} f(\vec{x}) d\vec{x} = \frac{n}{n+1}.
The instance needs to be created with one parameter representing the dimension n
.
dim
An integer that captures the dimension
Klaus Herrmann
n <- as.integer(3)
f <- new("unitCube_max",dim=n)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.