Rn_normalDensity-class | R Documentation |
\frac{1}{\sqrt{(2\pi)^n\det(\Sigma)}}\exp(-((\vec{x}-\vec{\mu})^{T}\Sigma^{-1}(\vec{x}-\vec{\mu}))/2)
on R^n
Implementation of the function
f \colon R^n \to (0,\infty),\, \vec{x} \mapsto f(\vec{x}) = \frac{1}{\sqrt{(2\pi)^n\det(\Sigma)}}\exp(-((\vec{x}-\vec{\mu})^{T}\Sigma^{-1}(\vec{x}-\vec{\mu}))/2),
where n \in \{1,2,3,\ldots\}
is the dimension of the integration domain R^n = \times_{i=1}^n R
.
In this case the integral is know to be
\int_{R^n} f(\vec{x}) d\vec{x} = 1.
The instance needs to be created with three parameters representing the dimension n
, the location vector \vec{\mu}
and the variance-covariance matrix \Sigma
which needs to be symmetric positive definite.
dim
An integer that captures the dimension
mean
A vector of size dim with real entries.
sigma
A matrix of size dim x dim that is symmetric positive definite.
Klaus Herrmann
n <- as.integer(3)
f <- new("Rn_normalDensity",dim=n,mean=rep(0,n),sigma=diag(n))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.