unitCube_Genz1-class | R Documentation |
\cos\left(2\pi u + \sum^{n}_{i=1} a_i x_i \right)
on [0,1]^n
Implementation of the function
f \colon [0,1]^n \to (-\infty,\infty),\, \vec{x} \mapsto f(\vec{x}) = \cos\left(2\pi u + \sum^{n}_{i=1} a_i x_i \right)
,
where n \in \{1,2,3,\ldots\}
is the dimension of the integration domain C_n = [0,1]^n
.
The integral is known to be
\int_{C_n} f(\vec{x}) d\vec{x} = \frac{2^n \cos\left(2\pi u + \sum_{i=1}^{n}a_i/2\right) \prod_{i=1}^n \sin(a_i/2)}{\prod_{i=1}^n a_i}.
The instance needs to be created with three parameter representing the dimension n
, the real number u
and the vector (a_1,...,a_n)
.
dim
An integer that captures the dimension
u
A real number representing a shift in the integrand
a
A vector of real numbers, each non-zero, increasing the difficulty of the integrand with higher absolute values
Klaus Herrmann
n <- as.integer(3)
u <- pi
a <- rep(exp(1),n)
f <- new("unitCube_Genz1",dim=n, u=u, a=a)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.