unitSphere_innerProduct1-class | R Documentation |
(\vec{x}\cdot\vec{a})(\vec{x}\cdot\vec{b})
on S^{n-1}
Implementation of the function
f \colon S^{n-1} \to R,\, \vec{x} \mapsto f(\vec{x}) = (\vec{x}\cdot\vec{a})(\vec{x}\cdot\vec{b}),
where n \in \{1,2,3,\ldots\}
is the dimension of the integration domain S^{n-1} = \{\vec{x}\in R^n : \Vert \vec{x} \Vert_2 = 1\}
and \vec{a}
and \vec{b}
are two n
-dimensional parameter vectors.
The integral is known to be
\int_{S^{n-1}} f(\vec{x}) d\vec{x} = \frac{2\pi^{n/2}(\vec{a}\cdot\vec{b})}{n\Gamma(n/2)},
where \vec{a}\in R^n
and \vec{b}\in R^n
.
Due to the difficulty of testing \Vert \vec{x} \Vert_2 = 1
in floating point arithmetic this class also implements the function "domainCheckP".
This allows to pass a list with an additional non-negative parameter "eps" representing a non-negative real number \varepsilon
and allows to test 1-\varepsilon \leq \Vert \vec{x} \Vert_2 \leq 1+\varepsilon
.
See also the documentation of the function "checkUnitSphere" that is used to perform the checks.
The instance needs to be created with three parameters representing the dimension n
and the two n
-dimensional (real) vectors \vec{a}
and \vec{b}
.
dim
An integer that captures the dimension
a
A n
-dimensional real vector
b
A n
-dimensional real vector
Klaus Herrmann
n <- as.integer(3)
f <- new("unitSphere_innerProduct1",dim=n,a=c(1,2,3),b=c(-1,-2,-3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.