| unitBall_normGauss-class | R Documentation |
\frac{1}{(2\pi)^{n/2}}\exp(-\Vert\vec{x}\Vert_2^2/2) on B^{n}Implementation of the function
f \colon B_n \to [0,\infty),\, \vec{x} \mapsto f(\vec{x}) = \frac{1}{(2\pi)^{n/2}}\exp(-\Vert\vec{x}\Vert_2^2/2) = \frac{1}{(2\pi)^{n/2}}\exp(-\frac{1}{2}\sum_{i=1}^n x_i^2),
where n \in \{1,2,3,\ldots\} is the dimension of the integration domain B_n = \{\vec{x}\in R^n : \Vert \vec{x} \Vert_2 \leq 1\}.
In this case the integral is know to be
\int_{B_n} f(\vec{x}) d\vec{x} = P[Z \leq 1] = F_{\chi^2_n}(1),
where Z follows a chisquare distribution with n degrees of freedom.
The instance needs to be created with one parameter representing n.
dimAn integer that captures the dimension
Klaus Herrmann
n <- as.integer(3)
f <- new("unitBall_normGauss",dim=n)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.