| standardSimplex_exp_sum-class | R Documentation |
\exp(-c(x_1 + \ldots + x_n)) on T_nImplementation of the function
f \colon T_n \to (0,\infty),\, \vec{x} \mapsto f(\vec{x}) = \exp(-c(x_1 + \ldots + x_n)),
where n \in \{1,2,3,\ldots\} is the dimension of the integration domain T_n = \{\vec{x} \in \R^n : x_i\geq 0, \Vert \vec{x} \Vert_1 \leq 1\} and c>0 is a constant.
The integral is known to be
\int_{T_n} f(\vec{x}) d\vec{x} = \frac{\Gamma(n)-\Gamma(n,c)}{\Gamma(n)c^n},
where \Gamma(s,x) is the incomplete gamma function.
The instance needs to be created with two parameters representing the dimension n and the parameter c>0.
dimAn integer that captures the dimension
coeffA strictly positive number representing the constant
Klaus Herrmann
n <- as.integer(3)
f <- new("standardSimplex_exp_sum",dim=n,coeff=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.