Nothing
anova.manyany = function(object, ..., nBoot=99, p.uni="none", block = object1$block, nCores = 1, bootID=NULL, replace=TRUE)
{
#set default na.action to exclude in order to not change dimensions of anything when NA's are present
naOptInit = getOption("na.action")
options(na.action="na.exclude")
object1 = object
# get object 2
dots <- list(...)
ndots <- length(dots)
fndObj2 <- FALSE
if (ndots==0) {
stop("missing a second manyany object")
}
else
{
if (ndots>1)
warning("current version only compares two manyany objects")
for (i in 1:ndots)
{
if (any(class(dots[[i]])=="manyany")){
object2 <- dots[[i]]
fndObj2 <- TRUE
break
}
}
if (!fndObj2) stop("cannot find object 2")
}
if(any(names(object1$call)=="composition"))
{
if(object1$call$composition==TRUE) #recode so that it fits compositional models as univariate, to save time and fuss/bother.
{
object1$call$formula = object1$formula
object2$call$formula = object2$formula
object1$call$data = object1$model
object2$call$data = object2$model
object1$residuals = as.matrix(c(object1$residuals))
object1$call$composition=FALSE
object2$call$composition=FALSE
}
}
#DW, 18/1/18: check for same composition arguments in each call
if(all(names(object1$call)!="composition"))
object1$call$composition = FALSE
if(all(names(object2$call)!="composition"))
object2$call$composition = FALSE
if(object1$call$composition!=object2$call$composition)
stop("Sorry, either both manyany objects will need to be compositional, or neither")
n.rows = dim(object1$resid)[1]
n.vars = dim(object1$resid)[2]
qfn = rep(NA,n.vars)
for(i.var in 1:n.vars)
{
if(grepl("egative",object1$family[[i.var]]$family) || object1$family[[i.var]]$family == "negbinomial")
qfn[i.var] = "qnbinom"
if(object1$family[[i.var]]$family=="poisson")
qfn[i.var] = "qpois"
if(object1$family[[i.var]]$family=="binomial")
{
qfn[i.var] = "qbinom"
warning("The binomial option of manyany currently assumes you have presence/absence data")
}
if(object1$family[[i.var]]$family=="gaussian")
qfn[i.var] = "qnorm"
if(object1$family[[i.var]]$family=="Tweedie")
qfn[i.var] = "qtweedie"
if(object1$family[[i.var]]$family=="ordinal")
qfn[i.var] = "qordinal"
}
if(is.null(bootID)==FALSE)
{
bootID = as.matrix(bootID)
if(dim(bootID)[2]!=n.rows)
stop("Number of columns of bootID must match number of rows in data")
nBoot = dim(bootID)[1] #overwriting nBoot with value implied by user-entered ID matrix
block = NULL #overwriting previous value for block
print("User-entered bootID matrix will be used to generate bootstrap samples")
}
n.levels = n.rows; unlistIDs = NULL #objects needed for block resampling otherwise ignorable
blockIDs = NULL
if(is.null(block)==FALSE)
{
tb=table(block)
n.levels = length(tb)
if(any(tb!=n.rows/n.levels))
{
print(tb)
stop("Sorry, block needs to be a balanced factor - same number of rows for each level")
}
else
{
blockIDs = vector("list",n.levels)
for(i.level in 1:n.levels)
blockIDs[[i.level]] = which(block==names(tb)[i.level])
unlistIDs = unlist(blockIDs) #needed to match each resampled observation with its correct location
}
}
#get observed test stat
#ft.1i=eval(object1$call) #this call not needed but good to check that eval is working, compare logLik to logLik(object1)
statj = 2 * ( logLik(object2)-logLik(object1) )
stat = sum(statj)
if(nCores>1)
{
nBooti = ceiling(nBoot/nCores)
# construct a list which says which rows of bootID to use in which cluster: only needed when bootID provided
bootRows = vector(length=nCores,mode="list")
for(iCore in 1:nCores)
bootRows[[iCore]] = 1:nBooti + nBooti*(iCore-1)
bootRows[[nCores]] = pmin( bootRows[[nCores]], nBoot )
# set up clusters, pass through arguments
cl=makeCluster(nCores)
argList = list(bootID=bootID, block=block, blockIDs = blockIDs, n.rows=n.rows, n.vars=n.vars, replace=replace, unlistIDs=unlistIDs, n.levels=n.levels, object1=object1, object2=object2, qfn=qfn)
clusterExport(cl,"argList", envir=environment())
#clusterExport(cl,c("nBooti","bootID","block","n.rows","n.vars","replace","unlistIDs","n.levels","object1","object2","qfn"), envir=environment())
out=parLapply(cl,bootRows,bootAnova)
#why not clusterapply??
stopCluster(cl)
# store results in vectors/matrices not lists
stat.i = rep(NA,nBooti*nCores)
statj.i = matrix(NA,n.vars,nBooti*nCores)
for(i.core in 1:nCores)
{
stat.i[(i.core-1)*nBooti+1:nBooti] = out[[i.core]]$stati.i
statj.i[,(i.core-1)*nBooti+1:nBooti] = out[[i.core]]$statj.ii
}
stat.i = stat.i[1:nBoot]
statj.i = statj.i[,1:nBoot]
}
else
{
out = bootAnova(bootRows=1:nBoot,bootID=bootID,block=block, blockIDs=blockIDs, n.rows=n.rows,n.vars=n.vars,replace=replace,unlistIDs=unlistIDs,n.levels=n.levels,object1=object1,object2=object2,qfn=qfn,nCores=1)
stat.i=out$stati.i
statj.i = out$statj.ii
}
if(n.vars>1)
dimnames(statj.i)[[1]] = dimnames(object1$residuals)[[2]]
p = ( 1 + sum(stat.i>stat-1.e-8) ) / (nBoot + 1)
if(length(statj)>1)
pj = ( 1 + apply(statj.i>statj-1.e-8,1,sum) ) / ( nBoot + 1)
else
pj = ( 1 + sum(statj.i>statj-1.e-8) ) / ( nBoot + 1)
class(stat.i) = "numeric"
if(p.uni=="unadjusted")
result = list(stat=stat,p=p,uni.test=statj,uni.p=pj,stat.i=stat.i,statj.i=statj.i,p.uni=p.uni,nBoot=nBoot)
if(p.uni=="none")
result = list(stat=stat,p=p,stat.i=stat.i,p.uni=p.uni,nBoot=nBoot)
options(na.action=naOptInit) #restore previous default for na.action
class(result) = "anova.manyany"
return(result)
}
print.anova.manyany=function(x, ...)
{
#get overall results in a table
table=matrix(c(x$stat,x$p),1,2)
dimnames(table)[[2]]=c("LR","Pr(>LR)")
dimnames(table)[[1]]=c("sum-of-LR")
allargs <- match.call(expand.dots = FALSE)
dots <- allargs$...
s.legend = TRUE
if(length(dots)>1)
{
if("signif.legend" %in% dots)
s.legend = signif.legend
}
if(x$p.uni=="none")
signif.legend = s.legend
else
signif.legend = FALSE
#print overall results
cat("\n")
printCoefmat(table, tst.ind=1, P.values=TRUE, has.Pvalue=TRUE, signif.legend=signif.legend, eps.Pvalue=1/(x$nBoot+1-1.e-8),...)
cat("\n")
#print univariate results in a table, if required
if(x$p.uni!="none")
{
signif.legend = s.legend
tablej=cbind(x$uni.test,x$uni.p)
dimnames(tablej)[[2]]=c("LR","P(>LR)")
printCoefmat(tablej, tst.ind=1, P.values=TRUE, has.Pvalue=TRUE, signif.legend=signif.legend, eps.Pvalue=1/(x$nBoot+1-1.e-8), ...)
}
}
bootAnova = function(bootRows,...)
{
nBooti = length(bootRows)
dots = list(...)
if ( any(names(dots)=="nCores") ) # if nCores=1, take ... and call it argList, to match parLapply call
{
if(dots$nCores==1)
argList=list(...)
}
#initialise parameters for bootstrapping
require(mvabund)
yMat = matrix(NA,argList$n.rows,argList$n.vars)
#next two lines no longer correct, requires matrix input to use formula
# if(argList$object1$family[[1]]$family=="ordinal")
# yMat=data.frame(yMat)
argList$object1$call$get.what="none" #to avoid wasting time computing residuals etc when resampling
argList$object2$call$get.what="none" #to avoid wasting time computing residuals etc when resampling
stati.i = rep(NA,nBooti)
statj.ii = matrix(NA,argList$n.vars,nBooti)
if(is.null(argList$bootID))
boot.Resamp = rep(NA,argList$n.rows)
# find where in object1$call and object2$call the response matrix is so it can be replaced with bootstrapped version
mf = argList$object2$model
nameOfResponse = as.character(argList$object2$formula[[2]])
whichIsResponse = which(names(mf)==nameOfResponse)
#now do the bootstrap
for(iBoot in 1:length(bootRows))
{
# first get ID entries for this resample
if(is.null(argList$bootID)==FALSE)
boot.Resamp = argList$bootID[bootRows[iBoot],]
else
{
if(is.null(argList$block))
boot.Resamp = sample(1:argList$n.rows,replace=argList$replace)
else
boot.Resamp[argList$unlistIDs] = unlist(argList$blockIDs[sample(argList$n.levels,replace=argList$replace)]) #unlistIDs is needed to make sure each unlisted blockID ends up in the right place
}
# resample PIT residuals
# DW, 1/3/19: pnorm these to get back from Dunn-Smyth resids to PIT-resids
resid.i = pnorm(as.matrix(argList$object1$residuals[boot.Resamp,]))
# now use PIT-transform to get resampled yMat
for(i.var in 1:argList$n.vars)
{
qparams = argList$object1$params[[i.var]]
qparams[[1]]=resid.i[,i.var]
names(qparams)[1]="p"
yMat[,i.var] = do.call(argList$qfn[i.var], qparams)
}
#save resampled yMat as whatever the original yMat was called in workspace - but without zerotons
if(argList$object1$family[[1]]$family=="ordinal")
is.zeroton = apply(yMat,2,function(x) length(table(x)))==1
else
is.zeroton = apply(yMat,2,sum,na.rm=TRUE)==0
# replace response matrix:
mf[[whichIsResponse]] = yMat[,is.zeroton==FALSE]
assign(deparse(argList$object1$call$data), mf)
assign(deparse(argList$object2$call$data), mf)
#re-fit manyany functions and calculate test stats using the resampled yMat:
if(sum(is.zeroton==FALSE)>0)
{
# recover()
ft.1i=eval(argList$object1$call)
ft.2i=eval(argList$object2$call)
statj.ii[is.zeroton==FALSE,iBoot]=2 * ( logLik(ft.2i)-logLik(ft.1i) )
stati.i[iBoot] = sum(statj.ii[,iBoot], na.rm=TRUE)
}
else
stati.i[iBoot] = 0
}
return(list(stati.i=stati.i,statj.ii=statj.ii))
}
qordinal = function(p,mu,muAll)
## QORDINAL - finds the level of an ordinal variable from its quantile and a matrix of cumulative probabilities for j-1.
## Input arguments are:
## P, a vector of cumultative probabilities
## MU, an irrelevant list with cumulative probs of answer ($ETA1) and its previous value ($ETA2) as returned by predict("cumprob") function
## MUALL, a matrix of cumulative probabilities for j-1 across all levels j=1,...,J.
{
rank=apply(muAll<=p,1,sum)
levels = dimnames(muAll)[[2]] #levels are stored as column labels of muAll
y = as.numeric(levels[rank])
return(y)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.