Nothing
###
### R routines for the R package mvmeta (c)
#
simulate.mvmeta <-
function(object, nsim=1, seed=NULL, ...) {
#
################################################################################
#
# ERROR FOR FUTURE IMPLEMENTATION OF MIKE'S MODEL
if(!object$method%in%c("fixed","ml","reml","mm","vc"))
stop("Simulating responses not allowed for estimation method used in model fitting")
#
# DEFINE THE SEED (FROM simulate.lm)
if(!exists(".Random.seed", envir=.GlobalEnv, inherits=FALSE)) runif(1)
if(is.null(seed)) {
RNGstate <- get(".Random.seed", envir=.GlobalEnv)
} else {
R.seed <- get(".Random.seed", envir=.GlobalEnv)
set.seed(seed)
RNGstate <- structure(seed, kind=as.list(RNGkind()))
on.exit(assign(".Random.seed", R.seed, envir=.GlobalEnv))
}
#
# RECOVER FITTED VALUES AND S (EXCLUDING MISSING VALUES) + Psi
fit <- as.matrix(na.omit(fitted(object)))
S <- if(is.null(nas <- attr(fit,"na.action")))
object$S else object$S[-nas,,drop=FALSE]
Psi <- if(is.null(object$Psi)) matrix(0,ncol(fit),ncol(fit)) else object$Psi
#
# FOR EFFICIENCY, IT SAMPLES SEVERAL OUTCOMES FROM THE SAME MEAN AND
# THEN RE-ARRANGE THEM
sim <- do.call("cbind",lapply(seq(nrow(fit)), function(i) {
mvSim(nsim,fit[i,],Sigma=xpndMat(S[i,])+Psi,drop=FALSE)}))
sim <- lapply(seq(nrow(sim)), function(i) drop(matrix(sim[i,],
ncol=ncol(fit),byrow=T,dimnames=dimnames(fit))))
if(nsim==1) sim <- sim[[1]]
#
sim
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.