netie: Neoantigen-T cell interaction estimation

Description Usage Arguments Value Author(s) References Examples

View source: R/netie.R

Description

The Bayesian Hierarchical Model named Neoantigen-T cell interaction estimation (Netie) is to estimate the history of the immune pressure on the evolution of the tumor clones.

Usage

1
2
netie(input_one_patient,sigma_square,alpha,beta,
sigma_p_sqr,sigma_a_sqr,max_iter,multi_sample)

Arguments

input_one_patient

a list with each data frame as the data for each patient. Each data frame consists 7 columns and each row is for one mutation. Please refer to https://github.com/tianshilu/Netie for more details.

sigma_square

hyperparameters for prior distributions. Please refer to https://github.com/tianshilu/Netie for more details.

alpha

hyperparameters for prior distributions. Please refer to https://github.com/tianshilu/Netie for more details.

beta

hyperparameters for prior distributions. Please refer to https://github.com/tianshilu/Netie for more details.

sigma_p_sqr

hyperparameters for prior distributions. Please refer to https://github.com/tianshilu/Netie for more details.

sigma_a_sqr

hyperparameters for prior distributions. Please refer to https://github.com/tianshilu/Netie for more details.

max_iter

the iterations of Markov chain Monte Carlo.

multi_sample

use True if one patient has more than one sample.

Value

The output is a list with the information of the anti-tumor selection pressure for each clone ac and for the whole tumor a.

Author(s)

Tianshi Lu

References

https://github.com/tianshilu/Netie

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
data(input_data)
netie(input_data,sigma_square=100000,alpha=10,beta=2,
sigma_p_sqr=0.1,max_iter=1000,multi_sample=TRUE)
## The function is currently defined as
function (input_one_patient, sigma_square, alpha, beta, sigma_p_sqr, 
    sigma_a_sqr, max_iter, multi_sample = FALSE) 
{
    if (all(input_one_patient$neo_load[!is.na(input_one_patient$cluster_id)] == 
        0)) {
        return(NA)
    }
    input_one_patient = input_one_patient[!is.na(input_one_patient$cluster_id), 
        ]
    if (multi_sample == T) {
        mutations = unlist(sapply(input_one_patient$mutation_id, 
            function(x) paste(strsplit(x, " ")[[1]][2], strsplit(x, 
                " ")[[1]][3])))
        input_one_patient$neo_load = unlist(sapply(mutations, 
            function(x) max(input_one_patient[mutations == x, 
                "neo_load"])))
        phi = "1"
        clones = list()
        clones[[id = "1"]] = mutations[paste(input_one_patient$sample_id, 
            input_one_patient$cluster_id) == paste(input_one_patient$sample_id, 
            input_one_patient$cluster_id)[1]]
        for (each_clone in unique(paste(input_one_patient$sample_id, 
            input_one_patient$cluster_id))[-1]) {
            mutations_one_clone = mutations[paste(input_one_patient$sample_id, 
                input_one_patient$cluster_id) == each_clone]
            phi_tmp = unlist(sapply(1:length(clones), function(x) {
                uniq_clone = clones[[x]]
                shared_mutations = intersect(uniq_clone, mutations_one_clone)
                if (length(shared_mutations)/length(uniq_clone) > 
                  0.5 & length(shared_mutations)/length(mutations_one_clone) > 
                  0.5) {
                  return(names(clones)[x])
                }
            }), use.names = FALSE)
            if (!is.null(phi_tmp)) {
                phi = c(phi, phi_tmp)
            }
            else {
                phi_tmp = max(as.numeric(names(clones))) + 1
                phi = c(phi, phi_tmp)
                clones[[id = as.character(phi_tmp)]] = mutations_one_clone
            }
        }
        names(phi) = unique(paste(input_one_patient$sample_id, 
            input_one_patient$cluster_id))
    }
    if (length(unique(input_one_patient$cluster_id)) > 1) {
        if (is.null(sigma_a_sqr)) {
            non_zero_neo_avg = sapply(unique(input_one_patient$cluster_id), 
                function(x) mean(input_one_patient[input_one_patient$cluster_id == 
                  x & input_one_patient$neo_load != 0, "neo_load"]))
            non_zero_neo_avg[is.nan(non_zero_neo_avg)] = 0
            sigma_a_sqr = sd(log(non_zero_neo_avg + 1))^2 * 10
            if (sigma_a_sqr == 0) {
                sigma_a_sqr = 1
            }
        }
    }
    else {
        sigma_a_sqr = 1
    }
    if (sigma_square < 100 * sigma_a_sqr) {
        print("sigma square should be much more larger than sigma a square!")
        stop()
    }
    if (alpha <= beta) {
        print("alpha should be larger than beta!")
        stop()
    }
    if (multi_sample == T) {
        max_vaf = unlist(sapply(mutations, function(x) max(input_one_patient[mutations == 
            x, "variant_allele_frequency"])))
        input_one_patient = input_one_patient[max_vaf > 0.05, 
            ]
    }
    else {
        input_one_patient = input_one_patient[input_one_patient$variant_allele_frequency > 
            0.05, ]
    }
    tmp = table(input_one_patient$cluster_id[input_one_patient$neo_load > 
        0])
    tmp = names(tmp[tmp >= 1])
    input_one_patient = input_one_patient[input_one_patient$cluster_id %in% 
        tmp, ]
    tmp = table(input_one_patient$cluster_id)
    tmp = names(tmp[tmp >= 2])
    input_one_patient = input_one_patient[input_one_patient$cluster_id %in% 
        tmp, ]
    if (dim(input_one_patient)[1] == 0) {
        return(NA)
    }
    if (multi_sample == T) {
        input_one_patient$phi = as.numeric(phi[paste(input_one_patient$sample_id, 
            input_one_patient$cluster_id)])
        input_one_patient$cluster_id = as.numeric(factor(paste(input_one_patient$sample_id, 
            input_one_patient$cluster_id)))
        phi_cluster = input_one_patient[, c("cluster_id", "phi")]
        phi_cluster = phi_cluster[!duplicated(phi_cluster$cluster_id), 
            ]
        rownames(phi_cluster) = as.character(phi_cluster$cluster_id)
        phi_cluster = phi_cluster[as.character(unique(input_one_patient$cluster_id)), 
            ]
    }
    else {
        input_one_patient$cluster_id = as.numeric(factor(input_one_patient$cluster_id))
    }
    input_one_patient[input_one_patient$neo_load > 150, "neo_load"] = 150
    ac = bc = rep(0, length(unique(input_one_patient$cluster_id)))
    pi = 0.5
    a = 0
    zck_list = list()
    ac_list = list()
    bc_list = list()
    acp_rate_ac_list = list()
    acp_rate_bc_list = list()
    a_all = c()
    pi_all = c()
    for (iter in 1:max_iter) {
        if (iter/1000 == round(iter/1000)) {
            cat(paste("Iteration", iter, "\n"))
            print(ac)
            print(ac)
            print(bc)
            print(acp_rate_ac)
            print(acp_rate_bc)
        }
        acp_rate_ac = rep(FALSE, length(unique(input_one_patient$cluster_id)))
        acp_rate_bc = rep(FALSE, length(unique(input_one_patient$cluster_id)))
        zck_df = input_one_patient[, c("mutation_id", "cluster_id")]
        zck_df$zck = 1
        if (multi_sample == T) {
            for (p in 1:length(unique(input_one_patient$phi))) {
                input_each_phi = input_one_patient[input_one_patient$phi == 
                  unique(input_one_patient$phi)[p], ]
                for (c in unique(input_each_phi$cluster_id)) {
                  input_each_clone = input_each_phi[input_each_phi$cluster_id == 
                    c, ]
                  vck = input_each_clone$variant_allele_frequency
                  lambda = exp(ac[c] * vck + bc[c])
                  nck = input_each_clone$neo_load
                  r_tmp = pi * (nck == 0)/(pi * (nck == 0) + 
                    (1 - pi) * dpois(nck, lambda, log = F))
                  r_tmp_deno = pi * (nck == 0) + (1 - pi) * dpois(nck, 
                    lambda, log = F)
                  r_tmp[r_tmp_deno == 0] = 0
                  zck = 1 * (runif(length(nck), 0, 1) > r_tmp)
                  names(zck) = input_each_clone$mutation_id
                  zck_df$zck[zck_df$mutation_id %in% names(zck)] = zck
                  bc_prim = rnorm(1, bc[c], sqrt(sigma_p_sqr))
                  lambda_prim_b = exp(ac[c] * vck + bc_prim)
                  lambda = exp(ac[c] * vck + bc[c])
                  tmp_prim = sum((zck == 1) * dpois(nck, lambda_prim_b, 
                    log = T))
                  tmp = sum((zck == 1) * dpois(nck, lambda, log = T))
                  llhr_b = exp(tmp_prim - bc_prim^2/(2 * sigma_square) - 
                    tmp + bc[c]^2/(2 * sigma_square))
                  acceptance_function_b = min(1, llhr_b)
                  u = runif(1, 0, 1)
                  if (u <= acceptance_function_b) {
                    bc[c] = bc_prim
                    acp_rate_bc[c] = TRUE
                  }
                }
                input_each_phi$bc = bc[input_each_phi$cluster_id]
                input_each_phi$ac = ac[c]
                vck_phi = input_each_phi$variant_allele_frequency
                lambda_phi = exp(input_each_phi$ac * vck_phi + 
                  input_each_phi$bc)
                nck_phi = input_each_phi$neo_load
                zck_phi = zck_df[input_each_phi$mutation_id, 
                  "zck"]
                ac_prim = rnorm(1, ac[c], sqrt(sigma_p_sqr))
                lambda_prim_a = exp(ac_prim * vck_phi + input_each_phi$bc)
                tmp_prim = sum((zck_phi == 1) * dpois(nck_phi, 
                  lambda_prim_a, log = T))
                tmp = sum((zck_phi == 1) * dpois(nck_phi, lambda_phi, 
                  log = T))
                if (length(table(input_one_patient$cluster_id)) == 
                  1) {
                  llhr_a = exp(tmp_prim - ac_prim^2/(2 * sigma_square) - 
                    tmp + ac[c]^2/(2 * sigma_square))
                }
                else {
                  llhr_a = exp(tmp_prim - (ac_prim - a)^2/(2 * 
                    sigma_a_sqr) - tmp + (ac[c] - a)^2/(2 * sigma_a_sqr))
                }
                acceptance_function_a = min(1, llhr_a)
                u = runif(1, 0, 1)
                if (u <= acceptance_function_a) {
                  ac[phi_cluster$phi == unique(input_each_clone$phi)] = ac_prim
                  acp_rate_ac[c] = TRUE
                }
            }
            pi = rbeta(1, alpha + sum((zck_df$zck == 0) * (input_one_patient$neo_load == 
                0)), beta + sum(zck_df$zck == 1))
            A = 1/sigma_square + length(unique(input_one_patient$phi))/sigma_a_sqr
            B = sum(ac[!duplicated(phi_cluster$phi)])/sigma_a_sqr
            a = rnorm(1, B/A, sqrt(1/A))
            ac_list[[iter]] = ac
            bc_list[[iter]] = bc
            zck_list[[iter]] = zck_df$zck
            acp_rate_ac_list[[iter]] = acp_rate_ac
            acp_rate_bc_list[[iter]] = acp_rate_bc
            a_all = c(a_all, a)
            pi_all = c(pi_all, pi)
        }
        else {
            for (c in 1:length(unique(input_one_patient$cluster_id))) {
                input_each_clone = input_one_patient[input_one_patient$cluster_id == 
                  unique(input_one_patient$cluster_id)[c], ]
                vck = input_each_clone$variant_allele_frequency
                lambda = exp(ac[c] * vck + bc[c])
                nck = input_each_clone$neo_load
                r_tmp = pi * (nck == 0)/(pi * (nck == 0) + (1 - 
                  pi) * dpois(nck, lambda, log = F))
                r_tmp_deno = pi * (nck == 0) + (1 - pi) * dpois(nck, 
                  lambda, log = F)
                r_tmp[r_tmp_deno == 0] = 0
                zck = 1 * (runif(length(nck), 0, 1) > r_tmp)
                names(zck) = input_each_clone$mutation_id
                zck_df$zck[zck_df$mutation_id %in% names(zck)] = zck
                ac_prim = rnorm(1, ac[c], sqrt(sigma_p_sqr))
                lambda_prim_a = exp(ac_prim * vck + bc[c])
                tmp_prim = sum((zck == 1) * dpois(nck, lambda_prim_a, 
                  log = T))
                tmp = sum((zck == 1) * dpois(nck, lambda, log = T))
                if (length(table(input_one_patient$cluster_id)) == 
                  1) {
                  llhr_a = exp(tmp_prim - ac_prim^2/(2 * sigma_square) - 
                    tmp + ac[c]^2/(2 * sigma_square))
                }
                else {
                  llhr_a = exp(tmp_prim - (ac_prim - a)^2/(2 * 
                    sigma_a_sqr) - tmp + (ac[c] - a)^2/(2 * sigma_a_sqr))
                }
                acceptance_function_a = min(1, llhr_a)
                u = runif(1, 0, 1)
                if (u <= acceptance_function_a) {
                  ac[c] = ac_prim
                  acp_rate_ac[c] = TRUE
                }
                bc_prim = rnorm(1, bc[c], sqrt(sigma_p_sqr))
                lambda_prim_b = exp(ac[c] * vck + bc_prim)
                lambda = exp(ac[c] * vck + bc[c])
                tmp_prim = sum((zck == 1) * dpois(nck, lambda_prim_b, 
                  log = T))
                tmp = sum((zck == 1) * dpois(nck, lambda, log = T))
                llhr_b = exp(tmp_prim - bc_prim^2/(2 * sigma_square) - 
                  tmp + bc[c]^2/(2 * sigma_square))
                acceptance_function_b = min(1, llhr_b)
                u = runif(1, 0, 1)
                if (u <= acceptance_function_b) {
                  bc[c] = bc_prim
                  acp_rate_bc[c] = TRUE
                }
            }
            pi = rbeta(1, alpha + sum((zck_df$zck == 0) * (input_one_patient$neo_load == 
                0)), beta + sum(zck_df$zck == 1))
            A = 1/sigma_square + length(unique(input_one_patient$cluster_id))/sigma_a_sqr
            B = sum(ac)/sigma_a_sqr
            a = rnorm(1, B/A, sqrt(1/A))
            ac_list[[iter]] = ac
            bc_list[[iter]] = bc
            zck_list[[iter]] = zck_df$zck
            acp_rate_ac_list[[iter]] = acp_rate_ac
            acp_rate_bc_list[[iter]] = acp_rate_bc
            a_all = c(a_all, a)
            pi_all = c(pi_all, pi)
        }
    }
    keep = round(max_iter/2):max_iter
    ac_final = Reduce("+", ac_list[keep])/length(keep)
    bc_final = Reduce("+", bc_list[keep])/length(keep)
    zck_df_final = round(Reduce("+", zck_list[keep])/length(keep))
    names(zck_df_final) = zck_df$mutation_id
    ac_rate = Reduce("+", acp_rate_ac_list[keep])/length(keep)
    bc_rate = Reduce("+", acp_rate_bc_list[keep])/length(keep)
    a_final = mean(a_all[keep])
    pi_final = mean(pi_all[keep])
    if (multi_sample == TRUE) {
        final_parameters = list(zck = data.frame(zck_df_final), 
            ac = ac_final, bc = bc_final, acp_rate_ac = ac_rate, 
            a = a_final, acp_rate_bc = bc_rate, pi = pi_final, 
            phi_cluster = phi_cluster)
    }
    else {
        final_parameters = list(zck = data.frame(zck_df_final), 
            ac = ac_final, bc = bc_final, acp_rate_ac = ac_rate, 
            a = a_final, acp_rate_bc = bc_rate, pi = pi_final)
    }
    all_parameters = list(zck = zck_list, ac = ac_list, bc = bc_list, 
        a = a_all, pi = pi_all)
    result = list(all_parameters = all_parameters, final_parameters = final_parameters)
    return(result)
  }

netie documentation built on Sept. 29, 2021, 9:08 a.m.