R/crossValidation.R

Defines functions runCrossValidate generateRandomFoldFunction MSElossFunction calcCrossVal calcCrossValSD

Documented in runCrossValidate

calcCrossValSD <- function(MCMCout, sampNum, nBootReps, saveData, lossFunction, predLoss){
  l <- ceiling(min(1000, (sampNum)/20)) ##length of each
  q <- sampNum - l + 1
  h <- ceiling(sampNum/l)
  blockcvValues <- numeric(nBootReps) ## block estimates of cv
  for(r in 1:nBootReps){
    randNum <- runif(h, 0, 1)
    randIndexStart <- ceiling(randNum*q)
    indexes <- cbind(randIndexStart, randIndexStart + l - 1)
    chunks <- c(apply(indexes, 1, function(x){
      seq(x[1], x[2], 1)}
    ))
    blockcvValues[r] <- mean(apply(MCMCout[chunks,, drop = FALSE], 1, lossFunction, saveData))
    if(predLoss){
      blockcvValues[r] <- log(blockcvValues[r])
    }
  }
  return(sd(blockcvValues))
}


calcCrossVal <- function(i,
                         conf,
                         foldFunction,
                         lossFunction,
                         niter,
                         nburnin,
                         returnSamples,
                         nBootReps,
                         parallel = FALSE,
                         silent){
  message(paste("dropping data fold", i))
  if(parallel) {
      dirName <- file.path(tempdir(), 'nimble_generatedCode', paste0("worker_", i))
  } else dirName = NULL
  model <- conf$model
  leaveOutNames <- model$expandNodeNames(foldFunction(i))
  currentDataNames <- model$getNodeNames(dataOnly = TRUE)
  currentDataNames <- currentDataNames[!(currentDataNames %in% leaveOutNames)]
  saveData <- values(model, leaveOutNames)
  if(!silent) newModel <- model$newModel(check = FALSE, replicate = TRUE)
  else newModel <- suppressMessages(model$newModel(check = FALSE, replicate = TRUE))
  newModel$resetData()
  values(newModel, leaveOutNames) <- NA
  newModel$setData(model$getVarNames(nodes = currentDataNames))
  if(!silent) Cmodel <- compileNimble(newModel, dirName = dirName)
  else Cmodel <- suppressMessages(compileNimble(newModel, dirName = dirName))
  predLoss <- FALSE
  if(is.character(lossFunction) && lossFunction == 'predictive'){
    paramNames <- model$getNodeNames(stochOnly = TRUE, includeData = FALSE)
    dependencies <- model$getDependencies(paramNames)
    missingDataNames <- leaveOutNames
    lossFunction <- function(posteriorSamples, observedData){
      values(Cmodel, paramNames) <- posteriorSamples
      Cmodel$calculate(dependencies)
      return(exp(Cmodel$calculate(missingDataNames)))
    }
    leaveOutNames <- paramNames
    predLoss <- TRUE
  }
  if(!silent) modelMCMCConf <- configureMCMC(newModel, nodes = leaveOutNames, monitors = leaveOutNames, print = silent)
  else modelMCMCConf <- suppressMessages(configureMCMC(newModel, nodes = leaveOutNames, monitors = leaveOutNames, print = silent))
  if(!predLoss) {
      for(i in seq_along(conf$samplerConfs)) {
          sConf <- conf$samplerConfs[[i]]
          modelMCMCConf$addSampler(target=sConf$target, type=sConf$samplerFunction, control=sConf$control, silent=TRUE)
      }
  }
  MCMCwarnUnsampledStochasticNodes_current <- nimbleOptions('MCMCwarnUnsampledStochasticNodes')
  nimbleOptions(MCMCwarnUnsampledStochasticNodes = FALSE)
  if(!silent){
    modelMCMC <- buildMCMC(modelMCMCConf)
    C.modelMCMC <- compileNimble(modelMCMC,
                                 project = newModel, dirName = dirName)
    C.modelMCMC$run(niter)
  }
  else{
      modelMCMC <- suppressMessages(buildMCMC(modelMCMCConf))
      C.modelMCMC <- suppressMessages(compileNimble(modelMCMC,
                                   project = newModel, dirName = dirName))
      silentNull <- suppressMessages(C.modelMCMC$run(niter, progressBar = FALSE))
  }
  nimbleOptions(MCMCwarnUnsampledStochasticNodes = MCMCwarnUnsampledStochasticNodes_current)
  leaveOutNamesExpanded <- newModel$expandNodeNames(leaveOutNames, returnScalarComponents = TRUE)
  MCMCout <- as.matrix(C.modelMCMC$mvSamples)[,leaveOutNamesExpanded, drop = FALSE]
  sampNum <- dim(MCMCout)[1]
  startIndex <- nburnin+1
  if(predLoss){
    values(model, missingDataNames) <- saveData
  }
  if(!is.na(nBootReps)){
    crossValAveSD <- calcCrossValSD(MCMCout=MCMCout, sampNum=sampNum,
                                    nBootReps=nBootReps,
                                    saveData=saveData,
                                    lossFunction = lossFunction,
                                    predLoss = predLoss)
  }
  else{
    crossValAveSD <- NA
  }
  crossVal <- mean(apply(MCMCout[startIndex:sampNum,, drop = FALSE], 1, lossFunction, saveData))
  if(predLoss){
    crossVal <- log(crossVal)
  }
  return(list(crossValAverage = crossVal,
              crossValAveSD = crossValAveSD,
              samples= if(returnSamples) MCMCout else NA))
}

MSElossFunction <- function(simulatedDataValues, actualDataValues){
  MSE <- mean((simulatedDataValues - actualDataValues)^2)
  return(MSE)
}

generateRandomFoldFunction <- function(model, k){
  dataNodes <- model$expandNodeNames(model$getNodeNames(dataOnly = TRUE))
  nDataNodes <- length(dataNodes)
  if(k > nDataNodes){
    stop('Cannot have more folds than there are data nodes in the model.')
  }
  approxNumPerFold <- floor(nDataNodes/k)
  leaveOutNames <- list()
  reducedDataNodeNames <- dataNodes
  for(i in 1:(k-1)){
    leaveOutNames[[i]] <- sample(reducedDataNodeNames, approxNumPerFold)
    reducedDataNodeNames <- reducedDataNodeNames[-which(reducedDataNodeNames %in% leaveOutNames[[i]])]
    approxNumPerFold <- floor(length(reducedDataNodeNames)/(k-i))
  }
  leaveOutNames[[k]] <- reducedDataNodeNames
  randomFoldFunction <- function(i){
    return(leaveOutNames[[i]])
  }
}



#' Perform k-fold cross-validation on a NIMBLE model fit by MCMC
#' 
#' Takes a NIMBLE model MCMC configuration and conducts k-fold cross-validation of
#' the MCMC fit, returning a measure of the model's predictive performance. 
#' 
#' @param MCMCconfiguration a NIMBLE MCMC configuration object, returned by a 
#'  call to \code{configureMCMC}. 
#' @param k number of folds that should be used for cross-validation.
#' @param foldFunction one of (1) an R function taking a single integer argument
#' \code{i}, and returning a character vector with the names of the data nodes 
#' to leave out of the model for fold \code{i}, or (2) the character string 
#' \code{"random"}, indicating that data nodes will be randomly partitioned 
#' into \code{k} folds.  Note that choosing "random" and setting \code{k} equal to
#' the total number of data nodes in the model will perform leave-one-out cross-validation.
#' Defaults to \code{"random"}.  See \sQuote{Details}.
#' @param lossFunction one of (1) an R function taking a set of simulated data
#' and a set of observed data, and calculating the loss from those, or (2) a
#' character string naming one of NIMBLE's built-in loss functions.  If a 
#' character string, must be one of \code{"predictive"} to use the log 
#' predictive density as a loss function or \code{"MSE"} to use the mean squared
#' error as a loss function.  Defaults to \code{"MSE"}.  See \sQuote{Details}
#' for information on creating a user-defined loss function.
#' @param MCMCcontrol (optional) an R list with parameters governing the 
#' MCMC algorithm,  See \sQuote{Details} for specific parameters.
#' @param returnSamples logical indicating whether to return all 
#' posterior samples from all MCMC runs.  This can result in a very large returned
#' object  (there will be \code{k} sets of
#' posterior samples returned).  Defaults to \code{FALSE}.
#' @param nCores number of cpu cores to use in
#' parallelizing the CV calculation. Only MacOS and Linux operating systems support multiple
#' cores at this time.  Defaults to 1.  
#' @param nBootReps number of bootstrap samples
#' to use when estimating the Monte Carlo error of the cross-validation metric. Defaults to 200.  If no Monte Carlo error estimate is desired,
#' \code{nBootReps} can be set to \code{NA}, which can potentially save significant computation time.
#' @param silent Boolean specifying whether to show output from the algorithm as it's running (default = FALSE).
#' @author Nicholas Michaud and Lauren Ponisio
#' @export
#' @details k-fold CV in NIMBLE proceeds by separating the data in a \code{nimbleModel}
#' into \code{k} folds, as determined by the
#' \code{foldFunction} argument.  For each fold, the corresponding data are held out of the model, 
#' and MCMC is run to estimate the posterior distribution and simultaneously impute
#' posterior predictive values for the held-out data. 
#' Then, the posterior predictive values are compared to the 
#' known, held-out data values via the specified \code{lossFunction}.  The loss values are
#' averaged over the posterior samples for each fold, and these averaged values for each
#' fold are then averaged over all folds to produce a single out-of-sample 
#' loss estimate.  Additionally, estimates of the Monte Carlo error for each fold are returned.
#' 
#' @section The \code{foldFunction} Argument:
#' If the default \code{'random'} method is not used, the \code{foldFunction} argument
#' must be an R function that takes a single integer-valued argument \code{i}.  \code{i}
#' is guaranteed to be within the range \eqn{[1, k]}. For each integer value \code{i},
#' the function should return a character vector of node names corresponding to the data
#' nodes that will be left out of the model for that fold. The returned node names can be expanded,
#' but don't need to be.   For example, if fold \code{i} is inteded to leave out the model nodes
#' \code{x[1]}, \code{x[2]} and \code{x[3]} then the function could return either
#' \code{c('x[1]', 'x[2]', 'x[3]')} or \code{'x[1:3]'}.
#'   
#' @section The \code{lossFunction} Argument:
#' If you don't wish to use NIMBLE's built-in \code{"MSE"} or \code{"predictive"} loss
#' functions, you may provide your own R function as the \code{lossFunction} argument to
#' \code{runCrossValidate}.  A user-supplied  \code{lossFunction} must be an R function
#' that takes two arguments: the first, named \code{simulatedDataValues}, will be a vector
#' of simulated data values.  The second, named \code{actualDataValues}, will be a vector of
#' observed data values corresponding to the simulated data values in \code{simulatedDataValues}.
#' The loss function should return a single scalar number.
#' See \sQuote{Examples} for an example of a user-defined loss function.
#'  
#' @section The \code{MCMCcontrol} Argument:
#' The \code{MCMCcontrol} argument is a list with the following elements:
#'	\itemize{
#'	  \item \code{niter}. An integer argument determining how many MCMC iterations should be run for each loss value calculation.  Defaults to 10000, but should probably be manually set.
#'	\item \code{nburnin}. The number of samples from the start of the MCMC chain to discard as burn-in for each loss value calculation.  Must be between 0 and \code{niter}.  Defaults to 10% of \code{niter}.
#'  }
#' 
#' @return
#' an R list with four elements:
#' \itemize{
#' \item \code{CVvalue}. The CV value, measuring the model's ability to predict new data.  Smaller relative values indicate better model performance.
#' \item \code{CVstandardError}. The standard error of the CV value, giving an indication of the total Monte Carlo error in the CV estimate.
#' \item \code{foldCVInfo}. An list of fold CV values and standard errors for each fold.
#' \item \code{samples}. An R list, only returned when \code{returnSamples = TRUE}.  The i'th element of this list will be a matrix of posterior samples from the model with the i'th fold of data left out.  There will be \code{k} sets of samples.
#' }
#'
#' @examples
#' \dontrun{
#'
#' ## We conduct CV on the classic "dyes" BUGS model.
#' 
#' dyesCode <- nimbleCode({
#'   for (i in 1:BATCHES) {
#'     for (j in 1:SAMPLES) {
#'       y[i,j] ~ dnorm(mu[i], tau.within);
#'     }
#'     mu[i] ~ dnorm(theta, tau.between);
#'   }
#' 
#'   theta ~ dnorm(0.0, 1.0E-10);
#'   tau.within ~ dgamma(0.001, 0.001);  sigma2.within <- 1/tau.within;
#'   tau.between ~ dgamma(0.001, 0.001);  sigma2.between <- 1/tau.between;
#' })
#' 
#' dyesData <- list(y = matrix(c(1545, 1540, 1595, 1445, 1595,
#'                               1520, 1440, 1555, 1550, 1440,
#'                               1630, 1455, 1440, 1490, 1605,
#'                               1595, 1515, 1450, 1520, 1560, 
#'                               1510, 1465, 1635, 1480, 1580,
#'                               1495, 1560, 1545, 1625, 1445), 
#'                               nrow = 6, ncol = 5))
#'                               
#' dyesConsts <- list(BATCHES = 6,
#'                    SAMPLES = 5)
#'                    
#' dyesInits <- list(theta = 1500, tau.within = 1, tau.between =  1)
#' 
#' dyesModel <- nimbleModel(code = dyesCode,
#'                          constants = dyesConsts,
#'                          data = dyesData,
#'                          inits = dyesInits)
#' 
#' # Define the fold function.
#' # This function defines the data to leave out for the i'th fold
#' # as the i'th row of the data matrix y.  This implies we will have
#' # 6 folds.
#' 
#' dyesFoldFunction <- function(i){
#'   foldNodes_i <- paste0('y[', i, ', ]')  # will return 'y[1,]' for i = 1 e.g.
#'   return(foldNodes_i)
#' }
#' 
#' # We define our own loss function as well.
#' # The function below will compute the root mean squared error.
#' 
#' RMSElossFunction <- function(simulatedDataValues, actualDataValues){
#'   dataLength <- length(simulatedDataValues) # simulatedDataValues is a vector
#'   SSE <- 0
#'   for(i in 1:dataLength){
#'     SSE <- SSE + (simulatedDataValues[i] - actualDataValues[i])^2
#'   }
#'   MSE <- SSE / dataLength
#'   RMSE <- sqrt(MSE)
#'   return(RMSE)
#' }
#' 
#' dyesMCMCconfiguration <- configureMCMC(dyesModel)
#'   
#' crossValOutput <- runCrossValidate(MCMCconfiguration = dyesMCMCconfiguration,
#'                                    k = 6,
#'                                    foldFunction = dyesFoldFunction,
#'                                    lossFunction = RMSElossFunction,
#'                                    MCMCcontrol = list(niter = 5000,
#'                                                       nburnin = 500))
#' }  
#' 
runCrossValidate <- function(MCMCconfiguration,
                             k,
                             foldFunction = 'random',
                             lossFunction = 'MSE',
                             MCMCcontrol = list(), 
                             returnSamples = FALSE,
                             nCores = 1,
                             nBootReps = 200,
                             silent = FALSE){
  
  model <- MCMCconfiguration$model
  niter <- MCMCcontrol[['niter']] 
  if(k < 2){
    stop("k must be at least 2.")
  }
  if(is.null(niter)){
    niter <- 10000
    warning("Defaulting to 10,000 MCMC iterations for each MCMC run.")
  }
  nburnin <-  MCMCcontrol[['nburnin']]  
  if(is.null(nburnin)){
    nburnin <- floor(0.1*niter)
  }
  else if(nburnin >= niter | nburnin < 0){
    stop("nburnin needs to be between 0 and niter.")
  }
  if(is.character(foldFunction) && foldFunction == 'random'){
    foldFunction <- generateRandomFoldFunction(model, k)
  }
  if(is.character(lossFunction) && lossFunction == 'MSE'){
    lossFunction <- MSElossFunction
  }
  allLeaveoutDataNames <- lapply(1:k, function(x){
    thisDataNames <- try(model$expandNodeNames(foldFunction(x)), silent = TRUE)
    if(inherits(thisDataNames, "try-error")){
      stop(paste("foldFunction is returning incorrect node names for fold", x))
    }
    else{
      if(!all(model$expandNodeNames(thisDataNames) %in% model$expandNodeNames(model$getNodeNames(dataOnly = TRUE)))){
        stop(paste("foldFunction is returning names of non-data nodes for fold", x))
      }
    }
  })
  
  if(!requireNamespace('parallel', quietly = TRUE)) {
    warning("To use multiple cores for the cross-validation calculation, the 'parallel' package must be available.  Defaulting to one core.")
    nCores <- 1
  }
  
  if(nCores > 1){
    crossValOut <- parallel::mclapply(1:k, calcCrossVal,
                            MCMCconfiguration,
                            foldFunction,
                            lossFunction,
                            niter,
                            nburnin,
                            returnSamples,
                            nBootReps,
                            TRUE,
                            silent,
                            mc.cores = nCores)
  } else{
      crossValOut <- lapply(1:k, calcCrossVal,
                            MCMCconfiguration,
                            foldFunction,
                            lossFunction,
                            niter,
                            nburnin,
                            returnSamples,
                            nBootReps,
                            FALSE,
                            silent)
  }
  CVvalue <- mean(sapply(crossValOut, function(x) x$crossValAverage),
                  na.rm=TRUE)
  if(!is.na(nBootReps)){
    CVstandardError <- sqrt(sum(sapply(crossValOut,
                                  function(x) x$crossValAveSD^2),
                           na.rm=TRUE)/k^2)
  }
  else{
    CVstandardError <- NA
  }
  foldCVinfo <- lapply(crossValOut, function(x){return(c(foldCVvalue = x$crossValAverage,
                                                    foldCVstandardError = x$crossValAveSD))})
  out <- list(CVvalue=CVvalue,
              CVstandardError=CVstandardError,
              foldCVinfo = foldCVinfo)
  if(!returnSamples){
    out$samples <- NULL
  }
  else{
    out$samples <- lapply(crossValOut, function(x) x$samples)
  }
  return(out)
}

Try the nimble package in your browser

Any scripts or data that you put into this service are public.

nimble documentation built on Sept. 11, 2024, 7:10 p.m.