Nothing
#' @title Define Latent Growth Curve Models as Class-specific Models (Submodels) for a Longitudinal Mixture Model
#'
#' @description This function defines latent growth curve models as class-specific models (submodels) for a longitudinal mixture model.
#'
#' @param dat A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
#' repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any.
#' It takes the value passed from \code{getMIX()}.
#' @param nClass An integer specifying the number of latent classes for the mixture model. It takes the value passed from \code{getMIX()}.
#' @param t_var A string specifying the prefix of the column names corresponding to the time variable at each study wave.
#' It takes the value passed from \code{getMIX()}.
#' @param records A numeric vector specifying indices of the study waves. It takes the value passed from \code{getMIX()}.
#' @param y_var A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
#' It takes the value passed from \code{getMIX()}.
#' @param curveFun A string specifying the functional form of the growth curve. Supported options for latent growth curve
#' models are: \code{"linear"} (or \code{"LIN"}), \code{"quadratic"} (or \code{"QUAD"}), \code{"negative exponential"}
#' (or \code{"EXP"}), \code{"Jenss-Bayley"} (or \code{"JB"}), and \code{"bilinear spline"} (or \code{"BLS"}). It takes the
#' value passed from \code{getMIX()}.
#' @param intrinsic A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the value
#' passed from \code{getMIX()}.
#' @param growth_TIC A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
#' variability of growth factors if any. It takes the value passed from \code{getMIX()}.
#' @param starts A list of initial values for the parameters, either takes the value passed from \code{getMIX()} or
#' derived by the helper function \code{getMIX.initial()}.
#'
#' @return A list of manifest and latent variables and paths for an mxModel object.
#'
#' @keywords internal
#'
#' @importFrom OpenMx mxPath mxModel mxAlgebraFromString mxMatrix mxFitFunctionML
#'
getsub.LGCM_l <- function(dat, nClass, t_var, records, y_var, curveFun, intrinsic, growth_TIC, starts){
## Define manifest variables
manifests <- paste0(y_var, records)
## Define paths for adding growth TICs if any
TIC_mean <- TIC_VAR <- BETA <- list()
if (!is.null(growth_TIC)){
for (k in 1:nClass){
nTICs <- length(growth_TIC)
### Y_mean values of TIC(s)
TIC_mean[[k]] <- mxPath(from = "one", to = growth_TIC, arrows = 1, free = TRUE, values = starts[[k]][[2]][[1]],
labels = paste0("c", k, "mux", 1:nTICs))
### Var-cov of TIC(s)
TIC_VAR[[k]] <- mxPath(from = growth_TIC, to = growth_TIC, connect = "unique.pairs", arrows = 2, free = TRUE,
values = starts[[k]][[2]][[2]],
labels = paste0("c", k, "phi", 1:(nTICs * (nTICs + 1)/2)))
}
}
GF_loadings <- getMIX_UNI.loadings(nClass = nClass, y_model = "LGCM", t_var = t_var, y_var = y_var,
curveFun = curveFun, intrinsic = intrinsic, records = records)
class.list <- list()
## Define latent variables, growth factor loadings, paths of the longitudinal outcome
if (curveFun %in% c("linear", "LIN")){
latents <- c("eta0", "eta1")
for (k in 1:nClass){
if (!is.null(growth_TIC)){
nGF <- length(latents)
nTICs <- length(growth_TIC)
for (p in 1:nGF){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[k]][[3]][p, ],
labels = paste0("c", k, "beta", p - 1, 1:nTICs))
}
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = c(manifests, growth_TIC), latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1"))),
mxPath(from = latents[1:2], to = latents[1:2], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi11"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE,
values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE,
values = 0, labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1)"),
name = paste0("c", k, "Y_alpha0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11))"),
name = paste0("c", k, "Y_psi_r")),
mxMatrix("Full", 2, length(growth_TIC), free = TRUE, values = starts[[k]][[3]],
labels = c(paste0("c", k, "beta0", 1:length(growth_TIC)),
paste0("c", k, "beta1", 1:length(growth_TIC))),
byrow = T, name = paste0("c", k, "beta")),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[k]][[2]][[1]],
labels = paste0("c", k, "mux", 1:length(growth_TIC)),
byrow = F, name = paste0("c", k, "mux")),
mxAlgebraFromString(paste0("c", k, "Y_alpha0 + c", k, "beta %*% c", k, "mux"),
name = paste0("c", k, "Y_mean0")),
GF_loadings[[k]], TIC_mean[[k]], TIC_VAR[[k]], BETA,
mxFitFunctionML(vector = T))
}
else if (is.null(growth_TIC)){
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1"))),
mxPath(from = latents[1:2], to = latents[1:2], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi11"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE,
values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE,
values = 0, labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1)"),
name = paste0("c", k, "Y_mean0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11))"),
name = paste0("c", k, "Y_psi0")),
GF_loadings[[k]], mxFitFunctionML(vector = T))
}
}
}
else if (curveFun %in% c("quadratic", "QUAD")){
latents <- c("eta0", "eta1", "eta2")
for (k in 1:nClass){
if (!is.null(growth_TIC)){
nGF <- length(latents)
nTICs <- length(growth_TIC)
for (p in 1:nGF){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[k]][[3]][p, ],
labels = paste0("c", k, "beta", p - 1, 1:nTICs))
}
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = c(manifests, growth_TIC), latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1", "Y_mueta2"))),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi11", "Y_psi12", "Y_psi22"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "eta2", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1, c", k, "Y_mueta2)"),
name = paste0("c", k, "Y_alpha0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01, c", k, "Y_psi02), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11, c", k, "Y_psi12), ",
"cbind(c", k, "Y_psi02, c", k, "Y_psi12, c", k, "Y_psi22))"),
name = paste0("c", k, "Y_psi_r")),
mxMatrix("Full", 3, length(growth_TIC), free = TRUE, values = starts[[k]][[3]],
labels = c(paste0("c", k, "beta0", 1:length(growth_TIC)),
paste0("c", k, "beta1", 1:length(growth_TIC)),
paste0("c", k, "beta2", 1:length(growth_TIC))),
byrow = T, name = paste0("c", k, "beta")),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[k]][[2]][[1]],
labels = paste0("c", k, "mux", 1:length(growth_TIC)),
byrow = F, name = paste0("c", k, "mux")),
mxAlgebraFromString(paste0("c", k, "Y_alpha0 + c", k, "beta %*% c", k, "mux"),
name = paste0("c", k, "Y_mean0")),
GF_loadings[[k]], TIC_mean[[k]], TIC_VAR[[k]], BETA,
mxFitFunctionML(vector = T))
}
else if (is.null(growth_TIC)){
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1", "Y_mueta2"))),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi11", "Y_psi12", "Y_psi22"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "eta2", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1, c", k, "Y_mueta2)"),
name = paste0("c", k, "Y_mean0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01, c", k, "Y_psi02), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11, c", k, "Y_psi12), ",
"cbind(c", k, "Y_psi02, c", k, "Y_psi12, c", k, "Y_psi22))"),
name = paste0("c", k, "Y_psi0")),
GF_loadings[[k]], mxFitFunctionML(vector = T))
}
}
}
else if (curveFun %in% c("negative exponential", "EXP")){
if (intrinsic){
latents <- c("eta0", "eta1", "deltag")
for (k in 1:nClass){
if (!is.null(growth_TIC)){
nGF <- length(latents)
nTICs <- length(growth_TIC)
for (p in 1:(nGF - 1)){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[k]][[3]][p, ],
labels = paste0("c", k, "beta", p - 1, 1:nTICs))
}
BETA[[nGF]] <- mxPath(from = growth_TIC, to = latents[nGF], arrows = 1, free = TRUE, values = starts[[k]][[3]][nGF, ],
labels = paste0("c", k, "beta", "g", 1:nTICs))
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = c(manifests, growth_TIC), latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:2],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][3],
labels = paste0("c", k, "Y_slp_ratio"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi0g", "Y_psi11", "Y_psi1g", "Y_psigg"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "deltag", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1, c", k, "Y_slp_ratio)"),
name = paste0("c", k, "Y_alpha0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01, c", k, "Y_psi0g), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11, c", k, "Y_psi1g), ",
"cbind(c", k, "Y_psi0g, c", k, "Y_psi1g, c", k, "Y_psigg))"),
name = paste0("c", k, "Y_psi_r")),
mxMatrix("Full", 3, length(growth_TIC), free = TRUE, values = starts[[k]][[3]],
labels = c(paste0("c", k, "beta0", 1:length(growth_TIC)),
paste0("c", k, "beta1", 1:length(growth_TIC)),
paste0("c", k, "betag", 1:length(growth_TIC))),
byrow = T, name = paste0("c", k, "beta")),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[k]][[2]][[1]],
labels = paste0("c", k, "mux", 1:length(growth_TIC)),
byrow = F, name = paste0("c", k, "mux")),
mxAlgebraFromString(paste0("c", k, "Y_alpha0 + c", k, "beta %*% c", k, "mux"),
name = paste0("c", k, "Y_mean0")),
GF_loadings[[k]], TIC_mean[[k]], TIC_VAR[[k]], BETA,
mxFitFunctionML(vector = T))
}
else if (is.null(growth_TIC)){
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:2],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][3],
labels = paste0("c", k, "Y_slp_ratio"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi0g", "Y_psi11", "Y_psi1g", "Y_psigg"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "deltag", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1, c", k, "Y_slp_ratio)"),
name = paste0("c", k, "Y_mean0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01, c", k, "Y_psi0g), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11, c", k, "Y_psi1g), ",
"cbind(c", k, "Y_psi0g, c", k, "Y_psi1g, c", k, "Y_psigg))"),
name = paste0("c", k, "Y_psi0")),
GF_loadings[[k]], mxFitFunctionML(vector = T))
}
}
}
else if (!intrinsic){
latents <- c("eta0", "eta1")
for (k in 1:nClass){
if (!is.null(growth_TIC)){
nGF <- length(latents)
nTICs <- length(growth_TIC)
for (p in 1:nGF){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[k]][[3]][p, ],
labels = paste0("c", k, "beta", p - 1, 1:nTICs))
}
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = c(manifests, growth_TIC), latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:2],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][3],
labels = paste0("c", k, "Y_slp_ratio"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:2], to = latents[1:2], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]][c(1:2, 4)],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi11"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1, c", k, "Y_slp_ratio)"),
name = paste0("c", k, "Y_alpha0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11))"),
name = paste0("c", k, "Y_psi_r")),
mxMatrix("Full", 2, length(growth_TIC), free = TRUE, values = starts[[k]][[3]][1:2, ],
labels = c(paste0("c", k, "beta0", 1:length(growth_TIC)),
paste0("c", k, "beta1", 1:length(growth_TIC))),
byrow = T, name = paste0("c", k, "beta")),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[k]][[2]][[1]],
labels = paste0("c", k, "mux", 1:length(growth_TIC)),
byrow = F, name = paste0("c", k, "mux")),
mxAlgebraFromString(paste0("c", k, "Y_alpha0[1:2, ] + c", k, "beta %*% c", k, "mux"),
name = paste0("c", k, "Y_mean0")),
GF_loadings[[k]], TIC_mean[[k]], TIC_VAR[[k]], BETA,
mxFitFunctionML(vector = T))
}
else if (is.null(growth_TIC)){
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:2], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:2],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][3],
labels = paste0("c", k, "Y_slp_ratio"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:2], to = latents[1:2], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]][c(1:2, 4)],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi11"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1, c", k, "Y_slp_ratio)"),
name = paste0("c", k, "Y_mean0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11))"),
name = paste0("c", k, "Y_psi0")),
GF_loadings[[k]], mxFitFunctionML(vector = T))
}
}
}
}
else if (curveFun %in% c("Jenss-Bayley", "JB")){
if (intrinsic){
latents <- c("eta0", "eta1", "eta2", "deltag")
for (k in 1:nClass){
if (!is.null(growth_TIC)){
nGF <- length(latents)
nTICs <- length(growth_TIC)
for (p in 1:(nGF - 1)){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[k]][[3]][p, ],
labels = paste0("c", k, "beta", p - 1, 1:nTICs))
}
BETA[[nGF]] <- mxPath(from = growth_TIC, to = latents[nGF], arrows = 1, free = TRUE, values = starts[[k]][[3]][nGF, ],
labels = paste0("c", k, "beta", "g", 1:nTICs))
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = c(manifests, growth_TIC), latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:3],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1", "Y_mueta2"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][4],
labels = paste0("c", k, "Y_acc_ratio"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:4], to = latents[1:4], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi0g", "Y_psi11",
"Y_psi12", "Y_psi1g", "Y_psi22", "Y_psi2g", "Y_psigg"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "eta2", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = "deltag", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L3", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1, c", k, "Y_mueta2, c", k, "Y_acc_ratio)"),
name = paste0("c", k, "Y_alpha0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01, c", k, "Y_psi02, c", k, "Y_psi0g), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11, c", k, "Y_psi12, c", k, "Y_psi1g), ",
"cbind(c", k, "Y_psi02, c", k, "Y_psi12, c", k, "Y_psi22, c", k, "Y_psi2g), ",
"cbind(c", k, "Y_psi0g, c", k, "Y_psi1g, c", k, "Y_psi2g, c", k, "Y_psigg))"),
name = paste0("c", k, "Y_psi_r")),
mxMatrix("Full", 4, length(growth_TIC), free = TRUE, values = starts[[k]][[3]],
labels = c(paste0("c", k, "beta0", 1:length(growth_TIC)),
paste0("c", k, "beta1", 1:length(growth_TIC)),
paste0("c", k, "beta2", 1:length(growth_TIC)),
paste0("c", k, "betag", 1:length(growth_TIC))),
byrow = T, name = paste0("c", k, "beta")),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[k]][[2]][[1]],
labels = paste0("c", k, "mux", 1:length(growth_TIC)),
byrow = F, name = paste0("c", k, "mux")),
mxAlgebraFromString(paste0("c", k, "Y_alpha0 + c", k, "beta %*% c", k, "mux"),
name = paste0("c", k, "Y_mean0")),
GF_loadings[[k]], TIC_mean[[k]], TIC_VAR[[k]], BETA,
mxFitFunctionML(vector = T))
}
else if (is.null(growth_TIC)){
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:3],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1", "Y_mueta2"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][4],
labels = paste0("c", k, "Y_acc_ratio"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:4], to = latents[1:4], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi0g", "Y_psi11",
"Y_psi12", "Y_psi1g", "Y_psi22", "Y_psi2g", "Y_psigg"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "eta2", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = "deltag", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L3", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1, c", k, "Y_mueta2, c", k, "Y_acc_ratio)"),
name = paste0("c", k, "Y_mean0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01, c", k, "Y_psi02, c", k, "Y_psi0g), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11, c", k, "Y_psi12, c", k, "Y_psi1g), ",
"cbind(c", k, "Y_psi02, c", k, "Y_psi12, c", k, "Y_psi22, c", k, "Y_psi2g), ",
"cbind(c", k, "Y_psi0g, c", k, "Y_psi1g, c", k, "Y_psi2g, c", k, "Y_psigg))"),
name = paste0("c", k, "Y_psi0")),
GF_loadings[[k]], mxFitFunctionML(vector = T))
}
}
}
else if (!intrinsic){
latents <- c("eta0", "eta1", "eta2")
for (k in 1:nClass){
if (!is.null(growth_TIC)){
nGF <- length(latents)
nTICs <- length(growth_TIC)
for (p in 1:nGF){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[k]][[3]][p, ],
labels = paste0("c", k, "beta", p - 1, 1:nTICs))
}
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = c(manifests, growth_TIC), latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:3],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1", "Y_mueta2"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][4],
labels = paste0("c", k, "Y_acc_ratio"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]][c(1:3, 5:6, 8)],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi11", "Y_psi12", "Y_psi22"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "eta2", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1, c", k, "Y_mueta2, c", k, "Y_acc_ratio)"),
name = paste0("c", k, "Y_alpha0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01, c", k, "Y_psi02), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11, c", k, "Y_psi12), ",
"cbind(c", k, "Y_psi02, c", k, "Y_psi12, c", k, "Y_psi22))"),
name = paste0("c", k, "Y_psi_r")),
mxMatrix("Full", 3, length(growth_TIC), free = TRUE, values = starts[[k]][[3]][1:3, ],
labels = c(paste0("c", k, "beta0", 1:length(growth_TIC)),
paste0("c", k, "beta1", 1:length(growth_TIC)),
paste0("c", k, "beta2", 1:length(growth_TIC))),
byrow = T, name = paste0("c", k, "beta")),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[k]][[2]][[1]],
labels = paste0("c", k, "mux", 1:length(growth_TIC)),
byrow = F, name = paste0("c", k, "mux")),
mxAlgebraFromString(paste0("c", k, "Y_alpha0[1:3, ] + c", k, "beta %*% c", k, "mux"),
name = paste0("c", k, "Y_mean0")),
GF_loadings[[k]], TIC_mean[[k]], TIC_VAR[[k]], BETA,
mxFitFunctionML(vector = T))
}
else if (is.null(growth_TIC)){
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:3],
labels = paste0("c", k, c("Y_mueta0", "Y_mueta1", "Y_mueta2"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][4],
labels = paste0("c", k, "Y_acc_ratio"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]][c(1:3, 5:6, 8)],
labels = paste0("c", k, c("Y_psi00", "Y_psi01", "Y_psi02", "Y_psi11", "Y_psi12", "Y_psi22"))),
mxPath(from = "eta0", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "eta2", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0, c", k, "Y_mueta1, c", k, "Y_mueta2, c", k, "Y_acc_ratio)"),
name = paste0("c", k, "Y_mean0")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00, c", k, "Y_psi01, c", k, "Y_psi02), ",
"cbind(c", k, "Y_psi01, c", k, "Y_psi11, c", k, "Y_psi12), ",
"cbind(c", k, "Y_psi02, c", k, "Y_psi12, c", k, "Y_psi22))"),
name = paste0("c", k, "Y_psi0")),
GF_loadings[[k]], mxFitFunctionML(vector = T))
}
}
}
}
else if (curveFun %in% c("bilinear spline", "BLS")){
if (intrinsic){
latents <- c("eta0s", "eta1s", "eta2s", "deltag")
for (k in 1:nClass){
if (!is.null(growth_TIC)){
nGF <- length(latents)
nTICs <- length(growth_TIC)
for (p in 1:(nGF - 1)){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[k]][[3]][p, ],
labels = paste0("c", k, "beta", p - 1, 1:nTICs))
}
BETA[[nGF]] <- mxPath(from = growth_TIC, to = latents[nGF], arrows = 1, free = TRUE, values = starts[[k]][[3]][nGF, ],
labels = paste0("c", k, "beta", "g", 1:nTICs))
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = c(manifests, growth_TIC), latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:3],
labels = paste0("c", k, c("Y_mueta0s", "Y_mueta1s", "Y_mueta2s"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][4],
labels = paste0("c", k, "Y_knot"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:4], to = latents[1:4], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]],
labels = paste0("c", k, c("Y_psi00s", "Y_psi01s", "Y_psi02s", "Y_psi0gs", "Y_psi11s",
"Y_psi12s", "Y_psi1gs", "Y_psi22s", "Y_psi2gs", "Y_psiggs"))),
mxPath(from = "eta0s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "eta2s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = "deltag", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L3", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0s, c", k, "Y_mueta1s, c", k, "Y_mueta2s)"),
name = paste0("c", k, "Y_alpha_s")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00s, c", k, "Y_psi01s, c", k, "Y_psi02s, c", k, "Y_psi0gs), ",
"cbind(c", k, "Y_psi01s, c", k, "Y_psi11s, c", k, "Y_psi12s, c", k, "Y_psi1gs), ",
"cbind(c", k, "Y_psi02s, c", k, "Y_psi12s, c", k, "Y_psi22s, c", k, "Y_psi2gs), ",
"cbind(c", k, "Y_psi0gs, c", k, "Y_psi1gs, c", k, "Y_psi2gs, c", k, "Y_psiggs))"),
name = paste0("c", k, "Y_psi_s")),
mxMatrix("Full", 4, length(growth_TIC), free = TRUE, values = starts[[k]][[3]],
labels = c(paste0("c", k, "beta0", 1:length(growth_TIC)),
paste0("c", k, "beta1", 1:length(growth_TIC)),
paste0("c", k, "beta2", 1:length(growth_TIC)),
paste0("c", k, "betag", 1:length(growth_TIC))),
byrow = T, name = paste0("c", k, "beta_s")),
mxAlgebraFromString(paste0("rbind(cbind(1, -c", k, "Y_knot, c", k, "Y_knot, 0),",
"cbind(0, 1, -1, 0),",
"cbind(0, 1, 1, 0),",
"cbind(0, 0, 0, 1))"), name = paste0("c", k, "func")),
mxAlgebraFromString(paste0("rbind(cbind(1, -c", k, "Y_knot, c", k, "Y_knot, 0),",
"cbind(0, 1, -1, 0),",
"cbind(0, 1, 1, 0),",
"cbind(0, 0, 0, 1))"), name = paste0("c", k, "grad")),
mxAlgebraFromString(paste0("rbind(c", k, "func[1:3, 1:3] %*% c", k, "Y_alpha_s, c", k, "Y_knot)"),
name = paste0("c", k, "Y_alpha0")),
mxAlgebraFromString(paste0("c", k, "grad %*% c", k, "Y_psi_s %*% t(c", k, "grad)"),
name = paste0("c", k, "Y_psi_r")),
mxAlgebraFromString(paste0("c", k, "grad %*% c", k, "beta_s"), name = paste0("c", k, "beta")),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[k]][[2]][[1]],
labels = paste0("c", k, "mux", 1:length(growth_TIC)),
byrow = F, name = paste0("c", k, "mux")),
mxAlgebraFromString(paste0("c", k, "Y_alpha0 + c", k, "beta %*% c", k, "mux"),
name = paste0("c", k, "Y_mean0")),
GF_loadings[[k]], TIC_mean[[k]], TIC_VAR[[k]], BETA,
mxFitFunctionML(vector = T))
}
else if (is.null(growth_TIC)){
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:3],
labels = paste0("c", k, c("Y_mueta0s", "Y_mueta1s", "Y_mueta2s"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][4],
labels = paste0("c", k, "Y_knot"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:4], to = latents[1:4], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]],
labels = paste0("c", k, c("Y_psi00s", "Y_psi01s", "Y_psi02s", "Y_psi0gs", "Y_psi11s",
"Y_psi12s", "Y_psi1gs", "Y_psi22s", "Y_psi2gs", "Y_psiggs"))),
mxPath(from = "eta0s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "eta2s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = "deltag", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L3", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0s, c", k, "Y_mueta1s, c", k, "Y_mueta2s)"),
name = paste0("c", k, "Y_mean_s")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00s, c", k, "Y_psi01s, c", k, "Y_psi02s, c", k, "Y_psi0gs), ",
"cbind(c", k, "Y_psi01s, c", k, "Y_psi11s, c", k, "Y_psi12s, c", k, "Y_psi1gs), ",
"cbind(c", k, "Y_psi02s, c", k, "Y_psi12s, c", k, "Y_psi22s, c", k, "Y_psi2gs), ",
"cbind(c", k, "Y_psi0gs, c", k, "Y_psi1gs, c", k, "Y_psi2gs, c", k, "Y_psiggs))"),
name = paste0("c", k, "Y_psi_s")),
mxAlgebraFromString(paste0("rbind(cbind(1, -c", k, "Y_knot, c", k, "Y_knot, 0),",
"cbind(0, 1, -1, 0),",
"cbind(0, 1, 1, 0),",
"cbind(0, 0, 0, 1))"), name = paste0("c", k, "func")),
mxAlgebraFromString(paste0("rbind(cbind(1, -c", k, "Y_knot, c", k, "Y_knot, 0),",
"cbind(0, 1, -1, 0),",
"cbind(0, 1, 1, 0),",
"cbind(0, 0, 0, 1))"), name = paste0("c", k, "grad")),
mxAlgebraFromString(paste0("rbind(c", k, "func[1:3, 1:3] %*% c", k, "Y_mean_s, c", k, "Y_knot)"),
name = paste0("c", k, "Y_mean0")),
mxAlgebraFromString(paste0("c", k, "grad %*% c", k, "Y_psi_s %*% t(c", k, "grad)"),
name = paste0("c", k, "Y_psi0")),
GF_loadings[[k]], mxFitFunctionML(vector = T))
}
}
}
else if (!intrinsic){
latents <- c("eta0s", "eta1s", "eta2s")
for (k in 1:nClass){
if (!is.null(growth_TIC)){
nGF <- length(latents)
nTICs <- length(growth_TIC)
for (p in 1:nGF){
BETA[[p]] <- mxPath(from = growth_TIC, to = latents[p], arrows = 1, free = TRUE, values = starts[[k]][[3]][p, ],
labels = paste0("c", k, "beta", p - 1, 1:nTICs))
}
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = c(manifests, growth_TIC), latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:3],
labels = paste0("c", k, c("Y_mueta0s", "Y_mueta1s", "Y_mueta2s"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][4],
labels = paste0("c", k, "Y_knot"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]][c(1:3, 5:6, 8)],
labels = paste0("c", k, c("Y_psi00s", "Y_psi01s", "Y_psi02s", "Y_psi11s", "Y_psi12s", "Y_psi22s"))),
mxPath(from = "eta0s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "eta2s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0s, c", k, "Y_mueta1s, c", k, "Y_mueta2s)"),
name = paste0("c", k, "Y_alpha_s")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00s, c", k, "Y_psi01s, c", k, "Y_psi02s), ",
"cbind(c", k, "Y_psi01s, c", k, "Y_psi11s, c", k, "Y_psi12s), ",
"cbind(c", k, "Y_psi02s, c", k, "Y_psi12s, c", k, "Y_psi22s))"),
name = paste0("c", k, "Y_psi_s")),
mxMatrix("Full", 3, length(growth_TIC), free = TRUE, values = starts[[k]][[3]][1:3, ],
labels = c(paste0("c", k, "beta0", 1:length(growth_TIC)),
paste0("c", k, "beta1", 1:length(growth_TIC)),
paste0("c", k, "beta2", 1:length(growth_TIC))),
byrow = T, name = paste0("c", k, "beta_s")),
mxAlgebraFromString(paste0("rbind(cbind(1, -c", k, "Y_knot, c", k, "Y_knot),",
"cbind(0, 1, -1),",
"cbind(0, 1, 1))"), name = paste0("c", k, "func")),
mxAlgebraFromString(paste0("rbind(cbind(1, -c", k, "Y_knot, c", k, "Y_knot),",
"cbind(0, 1, -1),",
"cbind(0, 1, 1))"), name = paste0("c", k, "grad")),
mxAlgebraFromString(paste0("rbind(c", k, "func %*% c", k, "Y_alpha_s, c", k, "Y_knot)"),
name = paste0("c", k, "Y_alpha0")),
mxAlgebraFromString(paste0("c", k, "grad %*% c", k, "Y_psi_s %*% t(c", k, "grad)"),
name = paste0("c", k, "Y_psi_r")),
mxAlgebraFromString(paste0("c", k, "grad %*% c", k, "beta_s"), name = paste0("c", k, "beta")),
mxMatrix("Full", length(growth_TIC), 1, free = TRUE, values = starts[[k]][[2]][[1]],
labels = paste0("c", k, "mux", 1:length(growth_TIC)),
byrow = F, name = paste0("c", k, "mux")),
mxAlgebraFromString(paste0("c", k, "Y_alpha0[1:3, 1] + c", k, "beta %*% c", k, "mux"),
name = paste0("c", k, "Y_mean0")),
GF_loadings[[k]], TIC_mean[[k]], TIC_VAR[[k]], BETA,
mxFitFunctionML(vector = T))
}
else if (is.null(growth_TIC)){
class.list[[k]] <- mxModel(name = paste0("Class", k), type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = "one", to = latents[1:3], arrows = 1, free = TRUE,
values = starts[[k]][[1]][[1]][1:3],
labels = paste0("c", k, c("Y_mueta0s", "Y_mueta1s", "Y_mueta2s"))),
mxMatrix("Full", 1, 1, free = TRUE, values = starts[[k]][[1]][[1]][4],
labels = paste0("c", k, "Y_knot"), name = paste0("c", k, "Y_mug")),
mxPath(from = latents[1:3], to = latents[1:3], arrows = 2, connect = "unique.pairs",
free = TRUE, values = starts[[k]][[1]][[2]][c(1:3, 5:6, 8)],
labels = paste0("c", k, c("Y_psi00s", "Y_psi01s", "Y_psi02s", "Y_psi11s", "Y_psi12s", "Y_psi22s"))),
mxPath(from = "eta0s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 1),
mxPath(from = "eta1s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L1", records, "[1,1]")),
mxPath(from = "eta2s", to = paste0(y_var, records), arrows = 1, free = FALSE, values = 0,
labels = paste0("c", k, "L2", records, "[1,1]")),
mxPath(from = paste0(y_var, records), to = paste0(y_var, records),
arrows = 2, free = TRUE, values = starts[[k]][[1]][[3]],
labels = paste0("c", k, "Y_residuals")),
mxAlgebraFromString(paste0("rbind(c", k, "Y_mueta0s, c", k, "Y_mueta1s, c", k, "Y_mueta2s)"),
name = paste0("c", k, "Y_mean_s")),
mxAlgebraFromString(paste0("rbind(cbind(c", k, "Y_psi00s, c", k, "Y_psi01s, c", k, "Y_psi02s), ",
"cbind(c", k, "Y_psi01s, c", k, "Y_psi11s, c", k, "Y_psi12s), ",
"cbind(c", k, "Y_psi02s, c", k, "Y_psi12s, c", k, "Y_psi22s))"),
name = paste0("c", k, "Y_psi_s")),
mxAlgebraFromString(paste0("rbind(cbind(1, -c", k, "Y_knot, c", k, "Y_knot),",
"cbind(0, 1, -1),",
"cbind(0, 1, 1))"), name = paste0("c", k, "func")),
mxAlgebraFromString(paste0("rbind(cbind(1, -c", k, "Y_knot, c", k, "Y_knot),",
"cbind(0, 1, -1),",
"cbind(0, 1, 1))"), name = paste0("c", k, "grad")),
mxAlgebraFromString(paste0("rbind(c", k, "func %*% c", k, "Y_mean_s, c", k, "Y_knot)"),
name = paste0("c", k, "Y_mean0")),
mxAlgebraFromString(paste0("c", k, "grad %*% c", k, "Y_psi_s %*% t(c", k, "grad)"),
name = paste0("c", k, "Y_psi0")),
GF_loadings[[k]], mxFitFunctionML(vector = T))
}
}
}
}
## Define the output of the function
return(class.list)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.