Nothing
#'
#' This equation was found in a publication by Dobermann et al. (2011) \doi{doi:10.2134/agronj2010.0179}
#'
#' @title self start for spherical function
#' @name SSspherical
#' @rdname SSspherical
#' @description Self starter for a spherical function with parameters a (intercept), b (see below), xs (break-point)
#' @param x input vector
#' @param a the intercept
#' @param b the difference between the intercept and the asymptote, so that a + b = asymptote
#' @param xs break-point of transition between nonlinear and plateau
#' @return a numeric vector of the same length as x containing parameter estimates for equation specified
#' @details This function is nonlinear when \eqn{x < xs} and flat (\eqn{asymptote = a + b}) when \eqn{x >= xs}.
#' @export
#' @examples
#' \donttest{
#' require(ggplot2)
#' set.seed(123)
#' x <- seq(0, 400, length.out = 50)
#' y <- spherical(x, 2, 5, 200) + rnorm(length(x), sd = 0.5)
#' dat <- data.frame(x = x, y = y)
#' fit <- nls(y ~ SSspherical(x, a, b, xs), data = dat)
#' ## plot
#' ggplot(data = dat, aes(x = x, y = y)) +
#' geom_point() +
#' geom_line(aes(y = fitted(fit)))
#' ## Confidence intervals
#' confint(fit)
#' }
#'
NULL
sphericalInit <- function(mCall, LHS, data, ...){
xy <- sortedXyData(mCall[["x"]], LHS, data)
if(nrow(xy) < 3){
stop("Too few distinct input values to fit a spherical")
}
## Guessing a from an intercept model
fit1 <- stats::lm(xy[,"y"] ~ xy[,"x"] + I(xy[,"x"]^2))
## Atomic bomb approach to kill a mosquito
objfun <- function(cfs){
pred <- spherical(xy[,"x"], a=cfs[1], b=cfs[2], xs=cfs[3])
ans <- sum((xy[,"y"] - pred)^2)
ans
}
cfs <- c(coef(fit1)[1], max(xy[,"y"]) - coef(fit1)[1], mean(xy[,"x"]))
op <- try(stats::optim(cfs, objfun, method = "L-BFGS-B",
upper = c(Inf, Inf, max(xy[,"x"])),
lower = c(-Inf, -Inf, min(xy[,"x"]))), silent = TRUE)
if(!inherits(op, "try-error")){
a <- op$par[1]
b <- op$par[2]
xs <- op$par[3]
}else{
## If it fails I use the mean for the breakpoint
a <- coef(fit1)[1]
b <- max(xy[,"y"]) - coef(fit1)[1]
xs <- mean(xy[,"x"])
}
value <- c(a, b, xs)
names(value) <- mCall[c("a", "b", "xs")]
value
}
#' @rdname SSspherical
#' @return spherical: vector of the same length as x using the spherical function
#' @export
spherical <- function(x, a, b, xs){
.sp1 <- a + b * ((3 * x)/(2 * xs) - 0.5 * (x/xs)^3)
.value <- ((xs - x) < 0) * (a + b) + ((xs - x) >= 0) * .sp1
## Derivative with respect to a
.exp1 <- 1
## Derivative with respect to b
.exp2 <- ifelse((xs - x) < 0, 1, 3 * x/(2 * xs) - 0.5 * (x/xs)^3)
## Derivative with respect to xs
## deriv(~a + b * ((3 * x)/(2 * xs) - 0.5 * (x/xs)^3), "xs")
.expr1 <- 3 * x
.expr2 <- 2 * xs
.expr4 <- x/xs
.expr3 <- -(b * (.expr1 * 2/.expr2^2 - 0.5 * (3 * (x/xs^2 * .expr4^2))))
.exp3 <- ifelse((xs - x) < 0, 0, .expr3)
.actualArgs <- as.list(match.call()[c("a", "b", "xs")])
## Gradient
if (all(unlist(lapply(.actualArgs, is.name)))) {
.grad <- array(0, c(length(.value), 3L), list(NULL, c("a", "b", "xs")))
.grad[, "a"] <- .exp1
.grad[, "b"] <- .exp2
.grad[, "xs"] <- .exp3
dimnames(.grad) <- list(NULL, .actualArgs)
attr(.value, "gradient") <- .grad
}
.value
}
#' @rdname SSspherical
#' @export
SSspherical <- selfStart(spherical, initial = sphericalInit, c("a", "b", "xs"))
set.seed(123)
x <- seq(0, 400, length.out = 50)
y <- spherical(x, 2, 5, 200) + rnorm(length(x), sd = 0.5)
dat <- data.frame(x = x, y = y)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.