R/trajPlot.R

Defines functions map.grid2 setTrajLims trajPlot

Documented in trajPlot

#' Trajectory line plots with conditioning
#'
#' This function plots back trajectories. This function requires that data are
#' imported using the \code{importTraj} function.
#'
#' Several types of trajectory plot are available. \code{trajPlot} by default
#' will plot each lat/lon location showing the origin of each trajectory, if no
#' \code{pollutant} is supplied.
#'
#' If a pollutant is given, by merging the trajectory data with concentration
#' data (see example below), the trajectories are colour-coded by the
#' concentration of \code{pollutant}. With a long time series there can be lots
#' of overplotting making it difficult to gauge the overall concentration
#' pattern. In these cases setting \code{alpha} to a low value e.g. 0.1 can
#' help.
#'
#' The user can also show points instead of lines by \code{plot.type = "p"}.
#'
#' Note that \code{trajPlot} will plot only the full length trajectories. This
#' should be remembered when selecting only part of a year to plot.
#'
#'
#' @param mydata Data frame, the result of importing a trajectory file using
#'   \code{importTraj}.
#' @param lon Column containing the longitude, as a decimal.
#' @param lat Column containing the latitude, as a decimal.
#' @param pollutant Pollutant to be plotted. By default the trajectory height is
#'   used.
#' @param type \code{type} determines how the data are split, i.e., conditioned,
#'   and then plotted. The default is will produce a single plot using the
#'   entire data. Type can be one of the built-in types as detailed in
#'   \code{cutData} e.g. "season", "year", "weekday" and so on. For example,
#'   \code{type = "season"} will produce four plots --- one for each season.
#'
#'   It is also possible to choose \code{type} as another variable in the data
#'   frame. If that variable is numeric, then the data will be split into four
#'   quantiles (if possible) and labelled accordingly. If type is an existing
#'   character or factor variable, then those categories/levels will be used
#'   directly. This offers great flexibility for understanding the variation of
#'   different variables and how they depend on one another.
#'
#'   \code{type} can be up length two e.g. \code{type = c("season", "weekday")}
#'   will produce a 2x2 plot split by season and day of the week. Note, when two
#'   types are provided the first forms the columns and the second the rows.
#' @param map Should a base map be drawn? If \code{TRUE} the world base map from
#'   the \code{maps} package is used.
#' @param group It is sometimes useful to group and colour trajectories
#'   according to a grouping variable. See example below.
#' @param map.fill Should the base map be a filled polygon? Default is to fill
#'   countries.
#' @param map.res The resolution of the base map. By default the function uses
#'   the \sQuote{world} map from the \code{maps} package. If \code{map.res =
#'   "hires"} then the (much) more detailed base map \sQuote{worldHires} from
#'   the \code{mapdata} package is used. Use \code{library(mapdata)}. Also
#'   available is a map showing the US states. In this case \code{map.res =
#'   "state"} should be used.
#' @param map.cols If \code{map.fill = TRUE} \code{map.cols} controls the fill
#'   colour. Examples include \code{map.fill = "grey40"} and \code{map.fill =
#'   openColours("default", 10)}. The latter colours the countries and can help
#'   differentiate them.
#' @param map.alpha The transparency level of the filled map which takes values
#'   from 0 (full transparency) to 1 (full opacity). Setting it below 1 can help
#'   view trajectories, trajectory surfaces etc. \emph{and} a filled base map.
#' @param projection The map projection to be used. Different map projections
#'   are possible through the \code{mapproj} package. See \code{?mapproject} for
#'   extensive details and information on setting other parameters and
#'   orientation (see below).
#' @param parameters From the \code{mapproj} package. Optional numeric vector of
#'   parameters for use with the projection argument. This argument is optional
#'   only in the sense that certain projections do not require additional
#'   parameters. If a projection does not require additional parameters then set
#'   to null i.e. \code{parameters = NULL}.
#' @param orientation From the \code{mapproj} package. An optional vector
#'   c(latitude, longitude, rotation) which describes where the "North Pole"
#'   should be when computing the projection. Normally this is c(90, 0), which
#'   is appropriate for cylindrical and conic projections. For a planar
#'   projection, you should set it to the desired point of tangency. The third
#'   value is a clockwise rotation (in degrees), which defaults to the midrange
#'   of the longitude coordinates in the map.
#' @param grid.col The colour of the map grid to be used. To remove the grid set
#'   \code{grid.col = "transparent"}.
#' @param npoints A dot is placed every \code{npoints} along each full
#'   trajectory. For hourly back trajectories points are plotted every
#'   \code{npoint} hours. This helps to understand where the air masses were at
#'   particular times and get a feel for the speed of the air (points closer
#'   together correspond to slower moving air masses). If \code{npoints = NA}
#'   then no points are added.
#' @param origin If true a filled circle dot is shown to mark the receptor
#'   point.
#' @param plot Should a plot be produced? `FALSE` can be useful when analysing
#'   data to extract plot components and plotting them in other ways.
#' @param ... other arguments are passed to \code{cutData} and
#'   \code{scatterPlot}. This provides access to arguments used in both these
#'   functions and functions that they in turn pass arguments on to. For
#'   example, \code{plotTraj} passes the argument \code{cex} on to
#'   \code{scatterPlot} which in turn passes it on to the \code{lattice}
#'   function \code{xyplot} where it is applied to set the plot symbol size.
#' @export
#' @family trajectory analysis functions
#' @author David Carslaw
#' @examples
#'
#' # show a simple case with no pollutant i.e. just the trajectories
#' # let's check to see where the trajectories were coming from when
#' # Heathrow Airport was closed due to the Icelandic volcanic eruption
#' # 15--21 April 2010.
#' # import trajectories for London and plot
#' \dontrun{
#' lond <- importTraj("london", 2010)
#' # well, HYSPLIT seems to think there certainly were conditions where trajectories
#' # orginated from Iceland...
#' trajPlot(selectByDate(lond, start = "15/4/2010", end = "21/4/2010"))}
#'
#' # plot by day, need a column that makes a date
#' \dontrun{
#' lond$day <- as.Date(lond$date)
#' trajPlot(selectByDate(lond, start = "15/4/2010", end = "21/4/2010"),
#' type = "day")
#' }
#'
#' # or show each day grouped by colour, with some other options set
#' \dontrun{
#'  trajPlot(selectByDate(lond, start = "15/4/2010", end = "21/4/2010"),
#' group = "day", col = "turbo", lwd = 2, key.pos = "right", key.col = 1)
#' }
#' # more examples to follow linking with concentration measurements...
#'
trajPlot <- function(mydata, lon = "lon", lat = "lat", pollutant = "height",
                     type = "default", map = TRUE, group = NA, map.fill = TRUE,
                     map.res = "default", map.cols = "grey40",
                     map.alpha = 0.4, projection = "lambert",
                     parameters = c(51, 51), orientation = c(90, 0, 0),
                     grid.col = "deepskyblue", npoints = 12, origin = TRUE, plot = TRUE,...) {
  len <- NULL
  hour.inc <- NULL ## silence R check

  ## variables needed in trajectory plots
  vars <- c("date", "lat", "lon", "hour.inc", pollutant)

  ## if group is present, need to add that list of variables unless it is a
  ## pre-defined date-based one
  if (!is.na(group)) {
    if (group %in% dateTypes | any(type %in% dateTypes)) {
      if (group %in% dateTypes) {
        vars <- unique(c(vars, "date")) ## don't need group because it is
        ## defined by date
      } else {
        vars <- unique(c(vars, "date", group))
      }
    } else {
      vars <- unique(c(vars, group))
    }
  }

  mydata <- checkPrep(mydata, vars, type, remove.calm = FALSE)

  mydata <- filter(mydata, !is.na(lat), !is.na(lon))

  ## slect only full length trajectories
  mydata <- mydata[order(mydata$date, mydata$hour.inc), ]

  ## length of back mydataectories
  mydata$len <- ave(mydata$lat, mydata$date, FUN = length)

  ## find length of back trajectories, choose most frequent
  ## so that partial trajectories are not plotted
  n <- as.numeric(names(which.max(table(abs(mydata$len)))))

  mydata <- subset(mydata, len == n)

  ## Args
  Args <- list(...)
  method <- "scatter"

  ## location of receptor for map projection, used to show location on maps
  origin_xy <- head(subset(mydata, hour.inc == 0), 1) ## origin
  tmp <- mapproject(
    x = origin_xy[["lon"]][1],
    y = origin_xy[["lat"]][1],
    projection = projection,
    parameters = parameters,
    orientation = orientation
  )
  receptor <- c(tmp$x, tmp$y)

  ## set graphics
  current.strip <- trellis.par.get("strip.background")
  current.font <- trellis.par.get("fontsize")

  ## reset graphic parameters
  on.exit(trellis.par.set(

    fontsize = current.font
  ))

  # aspect, cex
  if (!"plot.type" %in% names(Args)) {
    Args$plot.type <- "l"
  }

  if (!"cex" %in% names(Args)) {
    Args$cex <- 0.1
  }

  if (!"ylab" %in% names(Args)) {
    Args$ylab <- ""
  }

  if (!"xlab" %in% names(Args)) {
    Args$xlab <- ""
  }

  if ("fontsize" %in% names(Args)) {
    trellis.par.set(fontsize = list(text = Args$fontsize))
  }

  ## xlim and ylim set by user
  if (!"xlim" %in% names(Args)) {
    Args$xlim <- range(mydata$lon)
  }

  if (!"ylim" %in% names(Args)) {
    Args$ylim <- range(mydata$lat)
  }

  ## extent of data (or limits set by user) in degrees
  trajLims <- c(Args$xlim, Args$ylim)

  ## need *outline* of boundary for map limits
  Args <- setTrajLims(mydata, Args, projection, parameters, orientation)

  ## transform data for map projection
  tmp <- mapproject(
    x = mydata[["lon"]],
    y = mydata[["lat"]],
    projection = projection,
    parameters = parameters,
    orientation = orientation
  )
  mydata[["lon"]] <- tmp$x
  mydata[["lat"]] <- tmp$y


  if (missing(pollutant)) { ## don't need key

    if (is.na(group)) key <- FALSE else key <- TRUE

    if (!"main" %in% names(Args)) {
      Args$main <- NULL
    }

    scatterPlot.args <- list(
      mydata,
      x = lon, y = lat, z = NA,
      type = type, method = method,
      map = map, key = key, group = group,
      map.fill = map.fill, map.res = map.res,
      map.cols = map.cols, map.alpha = map.alpha,
      traj = TRUE, projection = projection,
      parameters = parameters, orientation = orientation,
      grid.col = grid.col, trajLims = trajLims,
      receptor = receptor, npoints = npoints,
      origin = origin
    )
  } else {
    if (!"main" %in% names(Args)) {
      Args$main <- pollutant
    }

    scatterPlot.args <- list(
      mydata,
      x = lon, y = lat, z = pollutant,
      type = type, method = method,
      map = map, group = group,
      map.fill = map.fill, map.res = map.res,
      map.cols = map.cols,
      map.alpha = map.alpha, traj = TRUE, projection = projection,
      parameters = parameters, orientation = orientation,
      grid.col = grid.col, trajLims = trajLims,
      receptor = receptor, npoints = npoints,
      origin = origin
    )
  }

  # reset for Args
  scatterPlot.args <- listUpdate(scatterPlot.args, Args)
  scatterPlot.args <- listUpdate(scatterPlot.args, list(plot = plot))

  # plot
  plt <- do.call(scatterPlot, scatterPlot.args)
  
  output <-
    list(plot = plt$plot,
         data = dplyr::tibble(mydata),
         call = match.call())
  class(output) <- "openair"
  
  invisible(output)
}


setTrajLims <- function(mydata, Args, projection, parameters, orientation) {

  ## xlim and ylim set by user
  if ("xlim" %in% names(Args) & !all(is.na(Args$xlim))) {
    x1 <- Args$xlim[1]
    x2 <- Args$xlim[2]
  } else {
    x1 <- min(mydata$lon, na.rm = TRUE)
    x2 <- max(mydata$lon, na.rm = TRUE)
  }

  if ("ylim" %in% names(Args) & !all(is.na(Args$ylim))) {
    y1 <- Args$ylim[1]
    y2 <- Args$ylim[2]
  } else {
    y1 <- min(mydata$lat, na.rm = TRUE)
    y2 <- max(mydata$lat, na.rm = TRUE)
  }

  n <- 40 ## number of points along each vertex

  X <- c(
    seq(x1, x1, length.out = n), seq(x1, x2, length.out = n),
    seq(x2, x2, length.out = n), seq(x2, x1, length.out = n)
  )

  Y <- c(
    seq(y1, y2, length.out = n), seq(y2, y2, length.out = n),
    seq(y2, y1, length.out = n), seq(y1, y1, length.out = n)
  )

  tmp <- mapproject(
    x = X, y = Y, projection = projection,
    parameters = parameters, orientation = orientation
  )

  Args$xlim <- tmp$range[1:2]
  Args$ylim <- tmp$range[3:4]
  Args
}

## function from mapproj to add grid lines to a map
map.grid2 <- function(lim, nx = 9, ny = 9, labels = TRUE, pretty = TRUE,
                      cex = 1, col = "deepskyblue", lty = 2, font = 1,
                      projection = "rectangular", parameters = 52,
                      orientation = c(90, 0, 0), ...) {
  pretty.range <- function(lim, ...) {
    x <- pretty(lim, ...)
    if (abs(x[1] - lim[1]) > abs(x[2] - lim[1])) {
      x <- x[-1]
    }
    n <- length(x)
    if (abs(x[n] - lim[2]) > abs(x[n - 1] - lim[2])) {
      x <- x[-n]
    }
    x[1] <- lim[1]
    x[length(x)] <- lim[2]
    x
  }
  auto.format <- function(x) {
    for (digits in 0:6) {
      s <- formatC(x, digits = digits, format = "f")
      if (all(duplicated(s) == duplicated(x))) {
        break
      }
    }
    s
  }
  if (missing(lim)) {
    lim <- maps::.map.range()
  }
  if (is.list(lim)) {
    lim <- lim$range
  }
  if (lim[2] - lim[1] > 360) {
    lim[2] <- lim[1] + 360
  }
  if (pretty) {
    x <- pretty.range(lim[1:2], n = nx)
    y <- pretty.range(lim[3:4], n = ny)
  }
  else {
    x <- seq(lim[1], lim[2], len = nx)
    y <- seq(lim[3], lim[4], len = ny)
  }
  p <- mapproject(
    expand.grid(x = c(
      seq(lim[1], lim[2], len = 100),
      NA
    ), y = y),
    projection = projection,
    parameters = parameters,
    orientation = orientation
  )
  p <- maps::map.wrap(p)
  llines(p, col = col, lty = lty, ...)
  llines(mapproject(
    expand.grid(y = c(
      seq(lim[3], lim[4], len = 100),
      NA
    ), x = x),
    projection = projection,
    parameters = parameters,
    orientation = orientation
  ), col = col, lty = lty, ...)
  if (labels) {
    tx <- x[2]
    xinc <- median(diff(x))
    ty <- y[length(y) - 2]
    yinc <- median(diff(y))
    ltext(
      mapproject(
        expand.grid(x = x + xinc * 0.05, y = ty +
          yinc * 0.5),
        projection = projection,
        parameters = parameters,
        orientation = orientation
      ),
      labels = auto.format(x), cex = cex,
      adj = c(0, 0), col = col, font = font, ...
    )
    ltext(
      mapproject(
        expand.grid(x = tx + xinc * 0.5, y = y +
          yinc * 0.05),
        projection = projection,
        parameters = parameters,
        orientation = orientation
      ),
      labels = auto.format(y), cex = cex,
      adj = c(0, 0), col = col, font = font, ...
    )
  }
}

Try the openair package in your browser

Any scripts or data that you put into this service are public.

openair documentation built on May 29, 2024, 11:07 a.m.