OptimizationProblem-methods | R Documentation |
These functions are used to access data from an OptimizationProblem object.
nrow(x) ## S4 method for signature 'OptimizationProblem' nrow(x) ncol(x) ## S4 method for signature 'OptimizationProblem' ncol(x) ncell(x) ## S4 method for signature 'OptimizationProblem' ncell(x) modelsense(x) ## S4 method for signature 'OptimizationProblem' modelsense(x) vtype(x) ## S4 method for signature 'OptimizationProblem' vtype(x) obj(x) ## S4 method for signature 'OptimizationProblem' obj(x) pwlobj(x) ## S4 method for signature 'OptimizationProblem' pwlobj(x) A(x) ## S4 method for signature 'OptimizationProblem' A(x) rhs(x) ## S4 method for signature 'OptimizationProblem' rhs(x) sense(x) ## S4 method for signature 'OptimizationProblem' sense(x) lb(x) ## S4 method for signature 'OptimizationProblem' lb(x) ub(x) ## S4 method for signature 'OptimizationProblem' ub(x) col_ids(x) ## S4 method for signature 'OptimizationProblem' col_ids(x) row_ids(x) ## S4 method for signature 'OptimizationProblem' row_ids(x) number_of_branches(x) ## S4 method for signature 'OptimizationProblem' number_of_branches(x) get_data(x) ## S4 method for signature 'OptimizationProblem' get_data(x)
x |
OptimizationProblem object. |
The functions return the following data:
integer
number of rows (constraints).
integer
number of columns (decision variables).
integer
number of cells.
character
describing if the problem is to be
maximized ("max"
) or minimized ("min"
).
character
describing the type of each decision variable:
binary ("B"
), semi-continuous ("S"
), or continuous
("C"
)
numeric
vector defining the linear components of the
objective function.
list
object defining the piece-wise linear components
of the objective function.
Matrix::dgCMatrix matrix object defining the problem matrix.
numeric
vector with right-hand-side linear constraints
character
vector with the senses of the linear
constraints ("<="
, ">="
, "="
).
numeric
lower bound for each decision variable. Missing data
values (NA
) indicate no lower bound for a given variable.
numeric
upper bounds for each decision variable. Missing
data values (NA
) indicate no upper bound for a given variable.
integer
number of projects in the problem.
integer
number of actions in the problem.
integer
number of features in the problem.
integer
number of phylogenetic branches in
the problem.
list
, Matrix::dgCMatrix, numeric
vector, numeric
vector, or scalar integer
depending on the
method used.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.