Nothing
##' @title Compute value of primal problem given flows and arc costs
##' @param distances An InfinitySparseMatrix giving distances
##' @param solution A MCFSolutions object
##' @return The value of the primal problem, i.e. sum of
##' products of \code{distances} with flow along arcs in \code{solution}
##' @author Hansen
##' @importFrom dplyr left_join
##' @importFrom dplyr filter
evaluate_primal <- function(distances, solution) {
stopifnot(is(solution, "MCFSolutions"))
anyflipped <- any(solution@subproblems[["flipped"]])
## Following notation of Bertsekas *Network Optimization*, page 155,
## the primal problem value is
## \sum_{i,j} x_{ij} a_ij
## where
## - x_ij is the amount of flow along ij
## - a_ij is the cost of the edge ij
## (Node prices don't have a role here.)
nodes <- as(nodeinfo(solution), "tbl_df")
main_ij <- left_join(solution@arcs@matches,
dplyr::filter(nodes, nodes$upstream_not_down),
by = c("groups", "upstream" = "nodelabels"))
main_ij <- left_join(main_ij,
y = dplyr::filter(nodes, !nodes$upstream_not_down),
by = c("groups", "downstream" = "nodelabels"),
suffix = c(x = ".i", y = ".j")
)
eld <- edgelist(distances, node.labels(solution))
eld <- asS3(eld) # saves some dplyr headaches
if (anyflipped)
eld <- rbind(eld,
edgelist(t(distances),
node.labels(solution)
)
)
main_ij <- left_join(main_ij, eld,
by = c("upstream" = "i",
"downstream"= "j"),
suffix = c(x = "", y = ".dist"))
main_costs <- sum(main_ij$dist)
## The below addresses a circumstance that doesn't
## currently arise, namely nonzero costs for arcs involving
## bookkeeping nodes. It assumes that if/when that
## occurs:
## - bookkeeping node labels in the levels of the EdgeList's
## i/j cols indicates that we're in this scenario
## - any nonzero costs will be communicated by EdgeList entries
bookkeeping_node_labels <-
as.character(filter(nodes, is.na(nodes$upstream_not_down))$nodelabels)
bookkeeping_costs <-
if (any(eld[['i']] %in% bookkeeping_node_labels)) {
if (!anyflipped) {# if `anyflipped` is T, then this
eld <- rbind(eld, # was already done previously
edgelist(t(distances), node.labels(solution)))
}
bookkeeping_ij <- left_join(solution@arcs@bookkeeping,
eld, by=c("start" = "i", "end"="j"))
sum(bookkeeping_ij$dist * bookkeeping_ij$flow,
na.rm=TRUE)
} else {
0
}
main_costs + bookkeeping_costs
}
## Computing the Lagrangian given a match and a set of node prices
##
## @param distances An InfinitySparseMatrix, DenseMatrix or EdgeList giving distances
## @param solution A MCFSolutions object
## @return The value of the Lagrangian.
#' @importFrom dplyr left_join
#' @importFrom dplyr filter
evaluate_lagrangian <- function(distances, solution) {
stopifnot(is(solution, "MCFSolutions"),
is(distances, "EdgeList") ||
is(distances, "InfinitySparseMatrix") ||
is(distances, "DenseMatrix")
)
anyflipped <- any(solution@subproblems[["flipped"]])
## according to Bertsekas *Network Optimization*, page 155, the Lagrangian is given by:
## L(x, p) = \sum_{i,j} x_{ij} (a_ij - (p_i - p_j)) + \sum_i s_i p_i
## where
## - x_ij is the amount of flow along ij
## - a_ij is the cost of the edge ij
## - p_i is the cost of node ni
## - s_i is the amount of flow entering or leaving the system at i
##
## note to self, need to know if problem was flipped to get distances out of the ISM.
nodes <- as(nodeinfo(solution), "tbl_df")
main_ij <- left_join(solution@arcs@matches,
dplyr::filter(nodes, nodes$upstream_not_down),
by = c("groups", "upstream" = "nodelabels"))
main_ij <- left_join(main_ij,
y = dplyr::filter(nodes, !nodes$upstream_not_down),
by = c("groups", "downstream" = "nodelabels"),
suffix = c(x = ".i", y = ".j")
)
eld <- edgelist(distances, node.labels(solution))
eld <- asS3(eld) # saves some dplyr headaches
if (anyflipped)
eld <- rbind(eld, edgelist(t(distances), node.labels(solution)))
main_ij <- left_join(main_ij, eld,
by = c("upstream" = "i", "downstream"= "j"),
suffix = c(x = "", y = ".dist")
)
bookkeeping_ij <- left_join(solution@arcs@bookkeeping, nodes,
by = c("groups", "start" = "nodelabels"))
bookkeeping_ij <- left_join(bookkeeping_ij,
dplyr::filter(nodes,#assumes bookkeeping arcs terminate...
is.na(nodes$upstream_not_down)),#...only in bookkeeping nodes
by = c("groups", "end" = "nodelabels"),
suffix = c(x = ".i", y = ".j"))
sum_supply_price <- sum(nodes$supply * nodes$price, na.rm=TRUE)
sum_main_flow_cost <- sum(main_ij$dist - (main_ij$price.i - main_ij$price.j))
bookkeeping_node_labels <-
as.character(filter(nodes, is.na(nodes$upstream_not_down))$.nodelabels)
if (any(eld[['i']] %in% bookkeeping_node_labels)) {
warning("Distances involving bookkeeping nodes ignored/treated as 0")
}
sum_bookkeeping_flow_cost <-
sum(bookkeeping_ij$flow * (0 - (bookkeeping_ij$price.i - bookkeeping_ij$price.j)))
return(sum_main_flow_cost + sum_bookkeeping_flow_cost + sum_supply_price)
}
## Compute dual functional from distance, MCF problem description
##
## Both `solution@nodes` and `solution@arcs` are used, the former
## for node prices and the latter for upper capacities of bookkeeping
## arcs.
##
## @param distances An InfinitySparseMatrix, DenseMatrix or EdgeList giving distances
## @param solution A MCFSolutions object
## @return Value of the dual functional, a numeric of length 1.
#' @importFrom dplyr left_join
#' @importFrom dplyr inner_join
#' @importFrom dplyr filter
evaluate_dual <- function(distances, solution) {
stopifnot(is(solution, "MCFSolutions"),
is(solution, "FullmatchMCFSolutions") ||
all(nodeinfo(solution)[is.na(nodeinfo(solution)$upstream_not_down),
"name"] %in% c('(_Sink_)', '(_End_)')
),
is(distances, "EdgeList") ||
is(distances, "InfinitySparseMatrix") ||
is(distances, "DenseMatrix")
)
anyflipped <- any(solution@subproblems[["flipped"]])
## according to Bertsekas *Network Optimization*, page 156-7,
## the dual functional is given by:
##
## The dual functional, defined on pp. 155-6 of same ref., is
## Q(p) = \sum_{i,j} q(a_ij, c_ij; p_i, p_j) + \sum_i s_i p_i
## where
## - p_i is the price/potential of node ni
## - s_i is the amount of flow entering or leaving the system at i
## - u_ij is the upper capacity of edge ij
## - each edge ij is taken to have lower capacity 0
## - a_ij is the cost of the edge ij
## - q(a_ij, c_ij; p_i, p_j) =
## case_when(p_i > a_ij + p_j ~ (a_ij + p_j - p_i)*u_ij),
## p_i <= a_ij + p_j ~ 0)
## This Q(p) being what you get if minimize the Lagrangian over x's
## respecting capacity but not conservation of flow constraints.
##
nodes <- as(nodeinfo(solution), "tbl_df")
sum_supply_price <- sum(nodes$supply * nodes$price, na.rm=TRUE)
## calculate costs from bookkeeping edges
##
bookkeeping_ij <- left_join(solution@arcs@bookkeeping,
nodes,
by = c("groups", "start" = "nodelabels"))
bookkeeping_ij <- left_join(bookkeeping_ij,
y = dplyr::filter(nodes,#assumes bookkeeping arcs terminate ...
is.na(nodes$upstream_not_down)),#... only in bookkeeping nodes
by = c("groups", "end" = "nodelabels"),
suffix = c(x = ".i", y = ".j"))
nonpositive_flowcosts_bookkeeping <-
pmin(0,
bookkeeping_ij$price.j - bookkeeping_ij$price.i
) * bookkeeping_ij$capacity
eld <- edgelist(distances, node.labels(solution))
eld <- asS3(eld) # saves some dplyr headaches
bookkeeping_node_labels <-
as.character(filter(nodes, is.na(nodes$upstream_not_down))$nodelabels)
if (any(eld[['i']] %in% bookkeeping_node_labels)) {
warning("Distances involving bookkeeping nodes ignored/treated as 0")
}
if (anyflipped) {
eld <- rbind(eld, edgelist(t(distances), node.labels(solution)))
}
## now check if any treated/upstream nodes are being added; if so, bail
## (don't currently know how to impute prices for upstream nodes.
## nor do we have logic with which to impute their supplies.)
if (any(upstream_NA <- is.na(nodes[['price']]) &
!is.na(nodes[['upstream_not_down']]) &
nodes[['upstream_not_down']])) {
if (any(nodes[['name']][upstream_NA] %in%
as.character(c(eld[['i']], eld[['j']])) )) {
stop("Cannot impute node price for upstream nodes (usually treatment) that were not included in original matching problem.")
}
}
## if we've gotten this far, a missing node price means that it is a down stream node
## and the missing price is the lesser of the sink and the overflow bookkeeping nodes
if (any(downstream_NA <- is.na(nodes[['price']]) &
!is.na(nodes[['upstream_not_down']]) &
!nodes[['upstream_not_down']]
)
) {
for (gg in levels(factor(nodes$groups)))
{
price_imputation <-
min(nodes$price[nodes$groups==gg &
is.na(nodes$upstream_not_down)]
)
nodes[downstream_NA & nodes$groups==gg,
"price"] <- price_imputation
}
}
matchable_ij <-
inner_join(eld, y = filter(nodes, nodes$upstream_not_down),
by = c("i" = "nodelabels"))
matchable_ij <- inner_join(matchable_ij,
y = filter(nodes, !nodes$upstream_not_down),
by = c("j" = "nodelabels"),
suffix = c(x =".i", y =".j"))
nonpositive_flowcosts_matchables <-
pmin(0,
matchable_ij$dist -
(matchable_ij$price.i - matchable_ij$price.j)
)
return(sum_supply_price +
sum(nonpositive_flowcosts_bookkeeping) +
sum(nonpositive_flowcosts_matchables)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.