Nothing
context("plot")
# Tests powered by vdiffr.
# To update the reference with vdiffr:
# > library(vdiffr)
# > source("tests/testthat.R")
# > manage_cases()
test_that("plot draws correctly", {
skip_if(getRversion() < "4.1")
test_basic_plot <- function() plot(r)
# S100b
r <- r.s100b
expect_doppelganger("basic-s100b", test_basic_plot)
r <- r.ndka
expect_doppelganger("basic-ndka", test_basic_plot)
r <- r.wfns
expect_doppelganger("basic-wfns", test_basic_plot)
})
test_that("legacy.axis works correctly", {
skip_if(getRversion() < "4.1")
r <- r.s100b
test_legacy.axis_plot <- function() plot(r, legacy.axes=TRUE)
expect_doppelganger("legacy.axes", test_legacy.axis_plot)
})
test_that("Advanced screenshot 1 works correctly", {
skip_if(getRversion() < "4.1")
test_advanced_screenshot_1 <- function() {
plot(r.s100b.percent,
reuse.auc = FALSE, partial.auc=c(100, 90), partial.auc.correct=TRUE, # define a partial AUC (pAUC)
print.auc=TRUE, #display pAUC value on the plot with following options:
print.auc.pattern="Corrected pAUC (100-90%% SP):\n%.1f%%", print.auc.col="#1c61b6",
auc.polygon=TRUE, auc.polygon.col="#1c61b6", # show pAUC as a polygon
max.auc.polygon=TRUE, max.auc.polygon.col="#1c61b622", # also show the 100% polygon
main="Partial AUC (pAUC)")
plot(r.s100b.percent,
reuse.auc = FALSE, partial.auc=c(100, 90), partial.auc.correct=TRUE,
partial.auc.focus="se", # focus pAUC on the sensitivity
add=TRUE, type="n", # add to plot, but don't re-add the ROC itself (useless)
print.auc=TRUE, print.auc.pattern="Corrected pAUC (100-90%% SE):\n%.1f%%", print.auc.col="#008600",
print.auc.y=40, # do not print auc over the previous one
auc.polygon=TRUE, auc.polygon.col="#008600",
max.auc.polygon=TRUE, max.auc.polygon.col="#00860022")
}
expect_doppelganger("advanced.screenshot.1", test_advanced_screenshot_1)
})
test_that("Advanced screenshot 2 works correctly", {
skip_slow()
skip_if(getRversion() < "4.1")
test_advanced_screenshot_2 <- function() {
RNGkind(sample.kind="Rejection")
set.seed(42) # For reproducible CI
suppressMessages(rocobj <- plot.roc(aSAH$outcome, aSAH$s100b,
main="Confidence intervals", percent=TRUE,
ci=TRUE, # compute AUC (of AUC by default)
print.auc=TRUE)) # print the AUC (will contain the CI)
ciobj <- ci.se(rocobj, progress = "none", # CI of sensitivity
specificities=seq(0, 100, 5)) # over a select set of specificities
plot(ciobj, type="shape", col="#1c61b6AA") # plot as a blue shape
plot(ci(rocobj, of="thresholds", thresholds="best", progress="none")) # add one threshold
}
expect_doppelganger("advanced.screenshot.2", test_advanced_screenshot_2)
})
test_that("Advanced screenshot 3 works correctly", {
skip_if(getRversion() < "4.4.0")
test_advanced_screenshot_3 <- function() {
plot(r.s100b.percent, main="Smoothing")
lines(smooth(r.s100b.percent), # smoothing (default: binormal)
col = "#1c61b6")
lines(smooth(r.s100b.percent, method = "density"), # density smoothing
col = "#008600")
lines(smooth(r.s100b.percent, method = "fitdistr", # fit a distribution
density = "lognormal"), # let the distribution be log-normal
col = "#840000")
legend("bottomright", legend = c("Empirical", "Binormal", "Density", "Fitdistr\n(Log-normal)"), col = c("black", "#1c61b6", "#008600", "#840000"),lwd = 2)
}
expect_doppelganger("advanced.screenshot.3", test_advanced_screenshot_3)
})
test_that("Advanced screenshot 4 works correctly", {
skip_slow()
skip_if(getRversion() < "4.1")
test_advanced_screenshot_4 <- function() {
RNGkind(sample.kind="Rejection")
set.seed(42) # For reproducible CI
suppressMessages(rocobj <- plot.roc(aSAH$outcome, aSAH$s100b,
main="Confidence intervals of specificity/sensitivity", percent=TRUE,
ci=TRUE, of="se", # ci of sensitivity
specificities=seq(0, 100, 5), # on a select set of specificities
ci.type="shape", ci.col="#1c61b6AA", # plot the CI as a blue shape
progress = "none")) # hide progress bar
plot(ci.sp(rocobj, sensitivities=seq(0, 100, 5), progress = "none"), # ci of specificity
type="bars") # print this one as bars
}
expect_doppelganger("advanced.screenshot.4", test_advanced_screenshot_4)
})
test_that("Advanced screenshot 5 works correctly", {
skip_slow()
skip_if(getRversion() < "4.1")
test_advanced_screenshot_5 <- function() {
RNGkind(sample.kind="Rejection")
set.seed(42) # For reproducible CI
suppressMessages(plot.roc(aSAH$outcome, aSAH$s100b,
main="Confidence interval of a threshold", percent=TRUE,
ci=TRUE, of="thresholds", # compute AUC (of threshold)
thresholds="best", # select the (best) threshold
print.thres="best", # also highlight this threshold on the plot
progress = "none")) # hide progress bar
}
expect_doppelganger("advanced.screenshot.5", test_advanced_screenshot_5)
})
test_that("Advanced screenshot 6 works correctly", {
skip_if(getRversion() < "4.1")
test_advanced_screenshot_6 <- function() {
plot(r.s100b.percent, main="Statistical comparison", col="#1c61b6")
lines(r.ndka.percent, col="#008600")
testobj <- roc.test(r.s100b.percent, r.ndka.percent)
text(50, 50, labels=paste("p-value =", format.pval(testobj$p.value)), adj=c(0, .5))
legend("bottomright", legend=c("S100B", "NDKA"), col=c("#1c61b6", "#008600"), lwd=2)
}
expect_doppelganger("advanced.screenshot.6", test_advanced_screenshot_6)
})
test_that("plot and lines work with formula and subset", {
skip_if(getRversion() < "4.1")
test_plot_formula <- function() {
suppressMessages(plot.roc(outcome ~ ndka, data = aSAH, subset = gender == "Female", col="red"))
suppressMessages(lines.roc(outcome ~ ndka, data = aSAH))
suppressMessages(lines.roc(outcome ~ ndka, data = aSAH, subset = gender == "Male", col="blue"))
}
expect_doppelganger("plot_formula", test_plot_formula)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.